| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txcmp.x |
⊢ 𝑋 = ∪ 𝑅 |
| 2 |
|
txcmp.y |
⊢ 𝑌 = ∪ 𝑆 |
| 3 |
|
txcmp.r |
⊢ ( 𝜑 → 𝑅 ∈ Comp ) |
| 4 |
|
txcmp.s |
⊢ ( 𝜑 → 𝑆 ∈ Comp ) |
| 5 |
|
txcmp.w |
⊢ ( 𝜑 → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 6 |
|
txcmp.u |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ∈ Comp ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ Comp ) |
| 9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑌 ) |
| 12 |
1 2 7 8 9 10 11
|
txcmplem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
| 13 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑌 ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
| 14 |
|
unieq |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ∪ 𝑣 = ∪ ( 𝑓 ‘ 𝑢 ) ) |
| 15 |
14
|
sseq2d |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ↔ ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) |
| 16 |
2 15
|
cmpcovf |
⊢ ( ( 𝑆 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑌 ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) → ∃ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝑌 = ∪ 𝑤 ∧ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 17 |
4 13 16
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝑌 = ∪ 𝑤 ∧ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 18 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ) |
| 19 |
|
ffn |
⊢ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) → 𝑓 Fn 𝑤 ) |
| 20 |
|
fniunfv |
⊢ ( 𝑓 Fn 𝑤 → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) = ∪ ran 𝑓 ) |
| 21 |
18 19 20
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) = ∪ ran 𝑓 ) |
| 22 |
18
|
frnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ran 𝑓 ⊆ ( 𝒫 𝑊 ∩ Fin ) ) |
| 23 |
|
inss1 |
⊢ ( 𝒫 𝑊 ∩ Fin ) ⊆ 𝒫 𝑊 |
| 24 |
22 23
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ran 𝑓 ⊆ 𝒫 𝑊 ) |
| 25 |
|
sspwuni |
⊢ ( ran 𝑓 ⊆ 𝒫 𝑊 ↔ ∪ ran 𝑓 ⊆ 𝑊 ) |
| 26 |
24 25
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ ran 𝑓 ⊆ 𝑊 ) |
| 27 |
21 26
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ⊆ 𝑊 ) |
| 28 |
|
vex |
⊢ 𝑤 ∈ V |
| 29 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ V |
| 30 |
28 29
|
iunex |
⊢ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ V |
| 31 |
30
|
elpw |
⊢ ( ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝑊 ↔ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ⊆ 𝑊 ) |
| 32 |
27 31
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝑊 ) |
| 33 |
|
inss2 |
⊢ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin |
| 34 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) |
| 35 |
33 34
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑤 ∈ Fin ) |
| 36 |
|
inss2 |
⊢ ( 𝒫 𝑊 ∩ Fin ) ⊆ Fin |
| 37 |
|
fss |
⊢ ( ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝒫 𝑊 ∩ Fin ) ⊆ Fin ) → 𝑓 : 𝑤 ⟶ Fin ) |
| 38 |
18 36 37
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑓 : 𝑤 ⟶ Fin ) |
| 39 |
|
ffvelcdm |
⊢ ( ( 𝑓 : 𝑤 ⟶ Fin ∧ 𝑧 ∈ 𝑤 ) → ( 𝑓 ‘ 𝑧 ) ∈ Fin ) |
| 40 |
39
|
ralrimiva |
⊢ ( 𝑓 : 𝑤 ⟶ Fin → ∀ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) |
| 41 |
38 40
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∀ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) |
| 42 |
|
iunfi |
⊢ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) |
| 43 |
35 41 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) |
| 44 |
32 43
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝑊 ∩ Fin ) ) |
| 45 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑌 = ∪ 𝑤 ) |
| 46 |
|
uniiun |
⊢ ∪ 𝑤 = ∪ 𝑧 ∈ 𝑤 𝑧 |
| 47 |
45 46
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑌 = ∪ 𝑧 ∈ 𝑤 𝑧 ) |
| 48 |
47
|
xpeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) = ( 𝑋 × ∪ 𝑧 ∈ 𝑤 𝑧 ) ) |
| 49 |
|
xpiundi |
⊢ ( 𝑋 × ∪ 𝑧 ∈ 𝑤 𝑧 ) = ∪ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) |
| 50 |
48 49
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) = ∪ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ) |
| 51 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) |
| 52 |
|
xpeq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝑋 × 𝑢 ) = ( 𝑋 × 𝑧 ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 54 |
53
|
unieqd |
⊢ ( 𝑢 = 𝑧 → ∪ ( 𝑓 ‘ 𝑢 ) = ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 55 |
52 54
|
sseq12d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ↔ ( 𝑋 × 𝑧 ) ⊆ ∪ ( 𝑓 ‘ 𝑧 ) ) ) |
| 56 |
55
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ↔ ∀ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 57 |
51 56
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∀ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 58 |
|
ss2iun |
⊢ ( ∀ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ ( 𝑓 ‘ 𝑧 ) → ∪ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 59 |
57 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 60 |
50 59
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) ⊆ ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 61 |
18
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝑊 ∩ Fin ) ) |
| 62 |
23 61
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ( 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝑊 ) |
| 63 |
|
elpwi |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝑊 → ( 𝑓 ‘ 𝑧 ) ⊆ 𝑊 ) |
| 64 |
|
uniss |
⊢ ( ( 𝑓 ‘ 𝑧 ) ⊆ 𝑊 → ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ∪ 𝑊 ) |
| 65 |
62 63 64
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ∪ 𝑊 ) |
| 66 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) |
| 67 |
65 66
|
sseqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 68 |
67
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∀ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 69 |
|
iunss |
⊢ ( ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ↔ ∀ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 70 |
68 69
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 71 |
60 70
|
eqssd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) = ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 72 |
|
iuncom4 |
⊢ ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) = ∪ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) |
| 73 |
71 72
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) = ∪ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ) |
| 74 |
|
unieq |
⊢ ( 𝑣 = ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) → ∪ 𝑣 = ∪ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ) |
| 75 |
74
|
rspceeqv |
⊢ ( ( ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑋 × 𝑌 ) = ∪ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) |
| 76 |
44 73 75
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) |
| 77 |
76
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ 𝑌 = ∪ 𝑤 ) → ( ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) ) |
| 78 |
77
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ 𝑌 = ∪ 𝑤 ) → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) ) |
| 79 |
78
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → ( ( 𝑌 = ∪ 𝑤 ∧ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) ) |
| 80 |
79
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝑌 = ∪ 𝑤 ∧ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) ) |
| 81 |
17 80
|
mpd |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) |