Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isercolllem3 | Unicode version |
Description: Lemma for isercoll 13490. (Contributed by Mario Carneiro, 6-Apr-2015.) |
Ref | Expression |
---|---|
isercoll.z | |
isercoll.m | |
isercoll.g | |
isercoll.i | |
isercoll.0 | |
isercoll.f | |
isercoll.h |
Ref | Expression |
---|---|
isercolllem3 |
N
, ,, ,, ,, ,M
, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addid2 9784 | . . 3 | |
2 | 1 | adantl 466 | . 2 |
3 | addid1 9781 | . . 3 | |
4 | 3 | adantl 466 | . 2 |
5 | addcl 9595 | . . 3 | |
6 | 5 | adantl 466 | . 2 |
7 | 0cnd 9610 | . 2 | |
8 | cnvimass 5362 | . . . . 5 | |
9 | isercoll.g | . . . . . . 7 | |
10 | 9 | adantr 465 | . . . . . 6 |
11 | fdm 5740 | . . . . . 6 | |
12 | 10, 11 | syl 16 | . . . . 5 |
13 | 8, 12 | syl5sseq 3551 | . . . 4 |
14 | isercoll.z | . . . . 5 | |
15 | isercoll.m | . . . . 5 | |
16 | isercoll.i | . . . . 5 | |
17 | 14, 15, 9, 16 | isercolllem1 13487 | . . . 4 |
18 | 13, 17 | syldan 470 | . . 3 |
19 | 14, 15, 9, 16 | isercolllem2 13488 | . . . 4 |
20 | isoeq4 6218 | . . . 4 | |
21 | 19, 20 | syl 16 | . . 3 |
22 | 18, 21 | mpbird 232 | . 2 |
23 | 8 | a1i 11 | . . . . 5 |
24 | dfss1 3702 | . . . . 5 | |
25 | 23, 24 | sylib 196 | . . . 4 |
26 | 1nn 10572 | . . . . . . 7 | |
27 | 26 | a1i 11 | . . . . . 6 |
28 | ffvelrn 6029 | . . . . . . . . . 10 | |
29 | 9, 26, 28 | sylancl 662 | . . . . . . . . 9 |
30 | 29, 14 | syl6eleq 2555 | . . . . . . . 8 |
31 | 30 | adantr 465 | . . . . . . 7 |
32 | simpr 461 | . . . . . . 7 | |
33 | elfzuzb 11711 | . . . . . . 7 | |
34 | 31, 32, 33 | sylanbrc 664 | . . . . . 6 |
35 | ffn 5736 | . . . . . . 7 | |
36 | elpreima 6007 | . . . . . . 7 | |
37 | 10, 35, 36 | 3syl 20 | . . . . . 6 |
38 | 27, 34, 37 | mpbir2and 922 | . . . . 5 |
39 | ne0i 3790 | . . . . 5 | |
40 | 38, 39 | syl 16 | . . . 4 |
41 | 25, 40 | eqnetrd 2750 | . . 3 |
42 | imadisj 5361 | . . . 4 | |
43 | 42 | necon3bii 2725 | . . 3 |
44 | 41, 43 | sylibr 212 | . 2 |
45 | ffun 5738 | . . . 4 | |
46 | funimacnv 5665 | . . . 4 | |
47 | 10, 45, 46 | 3syl 20 | . . 3 |
48 | inss1 3717 | . . . 4 | |
49 | 48 | a1i 11 | . . 3 |
50 | 47, 49 | eqsstrd 3537 | . 2 |
51 | simpl 457 | . . 3 | |
52 | elfzuz 11713 | . . . 4 | |
53 | 52, 14 | syl6eleqr 2556 | . . 3 |
54 | isercoll.f | . . 3 | |
55 | 51, 53, 54 | syl2an 477 | . 2 |
56 | 47 | difeq2d 3621 | . . . . . 6 |
57 | difin 3734 | . . . . . 6 | |
58 | 56, 57 | syl6eq 2514 | . . . . 5 |
59 | 53 | ssriv 3507 | . . . . . 6 |
60 | ssdif 3638 | . . . . . 6 | |
61 | 59, 60 | mp1i 12 | . . . . 5 |
62 | 58, 61 | eqsstrd 3537 | . . . 4 |
63 | 62 | sselda 3503 | . . 3 |
64 | isercoll.0 | . . . 4 | |
65 | 64 | adantlr 714 | . . 3 |
66 | 63, 65 | syldan 470 | . 2 |
67 | elfznn 11743 | . . . 4 | |
68 | isercoll.h | . . . 4 | |
69 | 51, 67, 68 | syl2an 477 | . . 3 |
70 | 19 | eleq2d 2527 | . . . . . 6 |
71 | 70 | biimpa 484 | . . . . 5 |
72 | fvres 5885 | . . . . 5 | |
73 | 71, 72 | syl 16 | . . . 4 |
74 | 73 | fveq2d 5875 | . . 3 |
75 | 69, 74 | eqtr4d 2501 | . 2 |
76 | 2, 4, 6, 7, 22, 44, 50, 55, 66, 75 | seqcoll2 12513 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 \ cdif 3472 i^i cin 3474
C_ wss 3475 c0 3784 class class class wbr 4452
`' ccnv 5003 dom cdm 5004 ran crn 5005
|` cres 5006 " cima 5007 Fun wfun 5587
Fn wfn 5588 --> wf 5589 ` cfv 5593
Isom wiso 5594
(class class class)co 6296 cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cn 10561 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 chash 12405 |
This theorem is referenced by: isercoll 13490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-seq 12108 df-hash 12406 |
Copyright terms: Public domain | W3C validator |