| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | efgredlem.1 |  |-  ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) | 
						
							| 8 |  | efgredlem.2 |  |-  ( ph -> A e. dom S ) | 
						
							| 9 |  | efgredlem.3 |  |-  ( ph -> B e. dom S ) | 
						
							| 10 |  | efgredlem.4 |  |-  ( ph -> ( S ` A ) = ( S ` B ) ) | 
						
							| 11 |  | efgredlem.5 |  |-  ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 12 |  | fviss |  |-  ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) | 
						
							| 13 | 1 12 | eqsstri |  |-  W C_ Word ( I X. 2o ) | 
						
							| 14 | 1 2 3 4 5 6 | efgsdm |  |-  ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) | 
						
							| 15 | 14 | simp1bi |  |-  ( A e. dom S -> A e. ( Word W \ { (/) } ) ) | 
						
							| 16 | 8 15 | syl |  |-  ( ph -> A e. ( Word W \ { (/) } ) ) | 
						
							| 17 | 16 | eldifad |  |-  ( ph -> A e. Word W ) | 
						
							| 18 |  | wrdf |  |-  ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 | efgredlema |  |-  ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ph -> ( ( # ` A ) - 1 ) e. NN ) | 
						
							| 22 |  | nnm1nn0 |  |-  ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 ) | 
						
							| 24 | 21 | nnred |  |-  ( ph -> ( ( # ` A ) - 1 ) e. RR ) | 
						
							| 25 | 24 | lem1d |  |-  ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) <_ ( ( # ` A ) - 1 ) ) | 
						
							| 26 |  | eldifsni |  |-  ( A e. ( Word W \ { (/) } ) -> A =/= (/) ) | 
						
							| 27 | 8 15 26 | 3syl |  |-  ( ph -> A =/= (/) ) | 
						
							| 28 |  | wrdfin |  |-  ( A e. Word W -> A e. Fin ) | 
						
							| 29 |  | hashnncl |  |-  ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) | 
						
							| 30 | 17 28 29 | 3syl |  |-  ( ph -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) | 
						
							| 31 | 27 30 | mpbird |  |-  ( ph -> ( # ` A ) e. NN ) | 
						
							| 32 |  | nnm1nn0 |  |-  ( ( # ` A ) e. NN -> ( ( # ` A ) - 1 ) e. NN0 ) | 
						
							| 33 |  | fznn0 |  |-  ( ( ( # ` A ) - 1 ) e. NN0 -> ( ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` A ) - 1 ) ) <-> ( ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 /\ ( ( ( # ` A ) - 1 ) - 1 ) <_ ( ( # ` A ) - 1 ) ) ) ) | 
						
							| 34 | 31 32 33 | 3syl |  |-  ( ph -> ( ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` A ) - 1 ) ) <-> ( ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 /\ ( ( ( # ` A ) - 1 ) - 1 ) <_ ( ( # ` A ) - 1 ) ) ) ) | 
						
							| 35 | 23 25 34 | mpbir2and |  |-  ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` A ) - 1 ) ) ) | 
						
							| 36 |  | lencl |  |-  ( A e. Word W -> ( # ` A ) e. NN0 ) | 
						
							| 37 | 17 36 | syl |  |-  ( ph -> ( # ` A ) e. NN0 ) | 
						
							| 38 | 37 | nn0zd |  |-  ( ph -> ( # ` A ) e. ZZ ) | 
						
							| 39 |  | fzoval |  |-  ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) | 
						
							| 41 | 35 40 | eleqtrrd |  |-  ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( # ` A ) ) ) | 
						
							| 42 | 19 41 | ffvelcdmd |  |-  ( ph -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. W ) | 
						
							| 43 | 13 42 | sselid |  |-  ( ph -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. Word ( I X. 2o ) ) | 
						
							| 44 |  | lencl |  |-  ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. Word ( I X. 2o ) -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. NN0 ) | 
						
							| 45 | 43 44 | syl |  |-  ( ph -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. NN0 ) | 
						
							| 46 | 45 | nn0red |  |-  ( ph -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. RR ) | 
						
							| 47 |  | 2rp |  |-  2 e. RR+ | 
						
							| 48 |  | ltaddrp |  |-  ( ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. RR /\ 2 e. RR+ ) -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) < ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) | 
						
							| 49 | 46 47 48 | sylancl |  |-  ( ph -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) < ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) | 
						
							| 50 | 37 | nn0red |  |-  ( ph -> ( # ` A ) e. RR ) | 
						
							| 51 | 50 | lem1d |  |-  ( ph -> ( ( # ` A ) - 1 ) <_ ( # ` A ) ) | 
						
							| 52 |  | fznn |  |-  ( ( # ` A ) e. ZZ -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) | 
						
							| 53 | 38 52 | syl |  |-  ( ph -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) | 
						
							| 54 | 21 51 53 | mpbir2and |  |-  ( ph -> ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) | 
						
							| 55 | 1 2 3 4 5 6 | efgsres |  |-  ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) | 
						
							| 56 | 8 54 55 | syl2anc |  |-  ( ph -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) | 
						
							| 57 | 1 2 3 4 5 6 | efgsval |  |-  ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) | 
						
							| 58 | 56 57 | syl |  |-  ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) | 
						
							| 59 |  | fz1ssfz0 |  |-  ( 1 ... ( # ` A ) ) C_ ( 0 ... ( # ` A ) ) | 
						
							| 60 | 59 54 | sselid |  |-  ( ph -> ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) | 
						
							| 61 |  | pfxres |  |-  ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) | 
						
							| 62 | 17 60 61 | syl2anc |  |-  ( ph -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) | 
						
							| 63 | 62 | fveq2d |  |-  ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) | 
						
							| 64 |  | pfxlen |  |-  ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 65 | 17 60 64 | syl2anc |  |-  ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 66 | 63 65 | eqtr3d |  |-  ( ph -> ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 67 | 66 | fvoveq1d |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) | 
						
							| 68 |  | fzo0end |  |-  ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) | 
						
							| 69 |  | fvres |  |-  ( ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) | 
						
							| 70 | 21 68 69 | 3syl |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) | 
						
							| 71 | 58 67 70 | 3eqtrd |  |-  ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) | 
						
							| 72 | 71 | fveq2d |  |-  ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) = ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) | 
						
							| 73 | 1 2 3 4 5 6 | efgsdmi |  |-  ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. NN ) -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) | 
						
							| 74 | 8 21 73 | syl2anc |  |-  ( ph -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) | 
						
							| 75 | 1 2 3 4 | efgtlen |  |-  ( ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. W /\ ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) | 
						
							| 76 | 42 74 75 | syl2anc |  |-  ( ph -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) | 
						
							| 77 | 49 72 76 | 3brtr4d |  |-  ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) | 
						
							| 78 | 1 2 3 4 | efgtf |  |-  ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. W -> ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 79 | 42 78 | syl |  |-  ( ph -> ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 80 | 79 | simprd |  |-  ( ph -> ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) | 
						
							| 81 |  | ffn |  |-  ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W -> ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) ) | 
						
							| 82 |  | ovelrn |  |-  ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) -> ( ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) <-> E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) ) | 
						
							| 83 | 80 81 82 | 3syl |  |-  ( ph -> ( ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) <-> E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) ) | 
						
							| 84 | 74 83 | mpbid |  |-  ( ph -> E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) | 
						
							| 85 | 20 | simprd |  |-  ( ph -> ( ( # ` B ) - 1 ) e. NN ) | 
						
							| 86 | 1 2 3 4 5 6 | efgsdmi |  |-  ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. NN ) -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 87 | 9 85 86 | syl2anc |  |-  ( ph -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 88 | 1 2 3 4 5 6 | efgsdm |  |-  ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) | 
						
							| 89 | 88 | simp1bi |  |-  ( B e. dom S -> B e. ( Word W \ { (/) } ) ) | 
						
							| 90 | 9 89 | syl |  |-  ( ph -> B e. ( Word W \ { (/) } ) ) | 
						
							| 91 | 90 | eldifad |  |-  ( ph -> B e. Word W ) | 
						
							| 92 |  | wrdf |  |-  ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) | 
						
							| 93 | 91 92 | syl |  |-  ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) | 
						
							| 94 |  | fzo0end |  |-  ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 95 |  | elfzofz |  |-  ( ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 96 | 85 94 95 | 3syl |  |-  ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 97 |  | lencl |  |-  ( B e. Word W -> ( # ` B ) e. NN0 ) | 
						
							| 98 | 91 97 | syl |  |-  ( ph -> ( # ` B ) e. NN0 ) | 
						
							| 99 | 98 | nn0zd |  |-  ( ph -> ( # ` B ) e. ZZ ) | 
						
							| 100 |  | fzoval |  |-  ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 101 | 99 100 | syl |  |-  ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 102 | 96 101 | eleqtrrd |  |-  ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( # ` B ) ) ) | 
						
							| 103 | 93 102 | ffvelcdmd |  |-  ( ph -> ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) e. W ) | 
						
							| 104 | 1 2 3 4 | efgtf |  |-  ( ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) e. W -> ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 105 | 103 104 | syl |  |-  ( ph -> ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 106 | 105 | simprd |  |-  ( ph -> ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) | 
						
							| 107 |  | ffn |  |-  ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W -> ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) ) | 
						
							| 108 |  | ovelrn |  |-  ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) -> ( ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) <-> E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) | 
						
							| 109 | 106 107 108 | 3syl |  |-  ( ph -> ( ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) <-> E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) | 
						
							| 110 | 87 109 | mpbid |  |-  ( ph -> E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) | 
						
							| 111 |  | reeanv |  |-  ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) <-> ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) | 
						
							| 112 |  | reeanv |  |-  ( E. r e. ( I X. 2o ) E. s e. ( I X. 2o ) ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) <-> ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) | 
						
							| 113 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) | 
						
							| 114 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> A e. dom S ) | 
						
							| 115 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> B e. dom S ) | 
						
							| 116 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( S ` A ) = ( S ` B ) ) | 
						
							| 117 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> -. ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 118 |  | eqid |  |-  ( ( ( # ` A ) - 1 ) - 1 ) = ( ( ( # ` A ) - 1 ) - 1 ) | 
						
							| 119 |  | eqid |  |-  ( ( ( # ` B ) - 1 ) - 1 ) = ( ( ( # ` B ) - 1 ) - 1 ) | 
						
							| 120 |  | simpllr |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) | 
						
							| 121 | 120 | simpld |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) ) | 
						
							| 122 | 120 | simprd |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) | 
						
							| 123 |  | simplrl |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) ) | 
						
							| 124 | 123 | simpld |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> r e. ( I X. 2o ) ) | 
						
							| 125 | 123 | simprd |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> s e. ( I X. 2o ) ) | 
						
							| 126 |  | simplrr |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) | 
						
							| 127 | 126 | simpld |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) | 
						
							| 128 | 126 | simprd |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) | 
						
							| 129 |  | simpr |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 130 | 1 2 3 4 5 6 113 114 115 116 117 118 119 121 122 124 125 127 128 129 | efgredlemb |  |-  -. ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 131 |  | iman |  |-  ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) <-> -. ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 132 | 130 131 | mpbir |  |-  ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 133 | 132 | expr |  |-  ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) ) -> ( ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 134 | 133 | rexlimdvva |  |-  ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) -> ( E. r e. ( I X. 2o ) E. s e. ( I X. 2o ) ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 135 | 112 134 | biimtrrid |  |-  ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) -> ( ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 136 | 135 | rexlimdvva |  |-  ( ph -> ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 137 | 111 136 | biimtrrid |  |-  ( ph -> ( ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 138 | 84 110 137 | mp2and |  |-  ( ph -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 139 |  | fvres |  |-  ( ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 140 | 85 94 139 | 3syl |  |-  ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 141 | 138 70 140 | 3eqtr4d |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 142 |  | fz1ssfz0 |  |-  ( 1 ... ( # ` B ) ) C_ ( 0 ... ( # ` B ) ) | 
						
							| 143 | 98 | nn0red |  |-  ( ph -> ( # ` B ) e. RR ) | 
						
							| 144 | 143 | lem1d |  |-  ( ph -> ( ( # ` B ) - 1 ) <_ ( # ` B ) ) | 
						
							| 145 |  | fznn |  |-  ( ( # ` B ) e. ZZ -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) | 
						
							| 146 | 99 145 | syl |  |-  ( ph -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) | 
						
							| 147 | 85 144 146 | mpbir2and |  |-  ( ph -> ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) | 
						
							| 148 | 142 147 | sselid |  |-  ( ph -> ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) | 
						
							| 149 |  | pfxres |  |-  ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) | 
						
							| 150 | 91 148 149 | syl2anc |  |-  ( ph -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) | 
						
							| 151 | 150 | fveq2d |  |-  ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 152 |  | pfxlen |  |-  ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 153 | 91 148 152 | syl2anc |  |-  ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 154 | 151 153 | eqtr3d |  |-  ( ph -> ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 155 | 154 | fvoveq1d |  |-  ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 156 | 141 67 155 | 3eqtr4d |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) | 
						
							| 157 | 1 2 3 4 5 6 | efgsres |  |-  ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) | 
						
							| 158 | 9 147 157 | syl2anc |  |-  ( ph -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) | 
						
							| 159 | 1 2 3 4 5 6 | efgsval |  |-  ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) | 
						
							| 160 | 158 159 | syl |  |-  ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) | 
						
							| 161 | 156 58 160 | 3eqtr4d |  |-  ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 162 |  | fveq2 |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( S ` a ) = ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) | 
						
							| 163 | 162 | fveq2d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( # ` ( S ` a ) ) = ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) ) | 
						
							| 164 | 163 | breq1d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) ) | 
						
							| 165 | 162 | eqeq1d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( S ` a ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) ) ) | 
						
							| 166 |  | fveq1 |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( a ` 0 ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) ) | 
						
							| 167 | 166 | eqeq1d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 168 | 165 167 | imbi12d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) | 
						
							| 169 | 164 168 | imbi12d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) ) | 
						
							| 170 |  | fveq2 |  |-  ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( S ` b ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 171 | 170 | eqeq2d |  |-  ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) ) | 
						
							| 172 |  | fveq1 |  |-  ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( b ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) | 
						
							| 173 | 172 | eqeq2d |  |-  ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) | 
						
							| 174 | 171 173 | imbi12d |  |-  ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) | 
						
							| 175 | 174 | imbi2d |  |-  ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) ) | 
						
							| 176 | 169 175 | rspc2va |  |-  ( ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S /\ ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) | 
						
							| 177 | 56 158 7 176 | syl21anc |  |-  ( ph -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) | 
						
							| 178 | 77 161 177 | mp2d |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) | 
						
							| 179 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) <-> ( ( # ` A ) - 1 ) e. NN ) | 
						
							| 180 | 21 179 | sylibr |  |-  ( ph -> 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) | 
						
							| 181 | 180 | fvresd |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( A ` 0 ) ) | 
						
							| 182 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) <-> ( ( # ` B ) - 1 ) e. NN ) | 
						
							| 183 | 85 182 | sylibr |  |-  ( ph -> 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 184 | 183 | fvresd |  |-  ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( B ` 0 ) ) | 
						
							| 185 | 178 181 184 | 3eqtr3d |  |-  ( ph -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 186 | 185 11 | pm2.65i |  |-  -. ph |