| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | efgredlem.1 |  |-  ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) | 
						
							| 8 |  | efgredlem.2 |  |-  ( ph -> A e. dom S ) | 
						
							| 9 |  | efgredlem.3 |  |-  ( ph -> B e. dom S ) | 
						
							| 10 |  | efgredlem.4 |  |-  ( ph -> ( S ` A ) = ( S ` B ) ) | 
						
							| 11 |  | efgredlem.5 |  |-  ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 12 |  | efgredlemb.k |  |-  K = ( ( ( # ` A ) - 1 ) - 1 ) | 
						
							| 13 |  | efgredlemb.l |  |-  L = ( ( ( # ` B ) - 1 ) - 1 ) | 
						
							| 14 |  | efgredlemb.p |  |-  ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) | 
						
							| 15 |  | efgredlemb.q |  |-  ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) | 
						
							| 16 |  | efgredlemb.u |  |-  ( ph -> U e. ( I X. 2o ) ) | 
						
							| 17 |  | efgredlemb.v |  |-  ( ph -> V e. ( I X. 2o ) ) | 
						
							| 18 |  | efgredlemb.6 |  |-  ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) | 
						
							| 19 |  | efgredlemb.7 |  |-  ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) | 
						
							| 20 |  | efgredlemb.8 |  |-  ( ph -> -. ( A ` K ) = ( B ` L ) ) | 
						
							| 21 |  | uzp1 |  |-  ( P e. ( ZZ>= ` Q ) -> ( P = Q \/ P e. ( ZZ>= ` ( Q + 1 ) ) ) ) | 
						
							| 22 |  | fviss |  |-  ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) | 
						
							| 23 | 1 22 | eqsstri |  |-  W C_ Word ( I X. 2o ) | 
						
							| 24 | 1 2 3 4 5 6 | efgsdm |  |-  ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) | 
						
							| 25 | 24 | simp1bi |  |-  ( A e. dom S -> A e. ( Word W \ { (/) } ) ) | 
						
							| 26 | 8 25 | syl |  |-  ( ph -> A e. ( Word W \ { (/) } ) ) | 
						
							| 27 | 26 | eldifad |  |-  ( ph -> A e. Word W ) | 
						
							| 28 |  | wrdf |  |-  ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) | 
						
							| 29 | 27 28 | syl |  |-  ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) | 
						
							| 30 |  | fzossfz |  |-  ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ... ( ( # ` A ) - 1 ) ) | 
						
							| 31 | 1 2 3 4 5 6 7 8 9 10 11 | efgredlema |  |-  ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) | 
						
							| 32 | 31 | simpld |  |-  ( ph -> ( ( # ` A ) - 1 ) e. NN ) | 
						
							| 33 |  | fzo0end |  |-  ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) | 
						
							| 35 | 12 34 | eqeltrid |  |-  ( ph -> K e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) | 
						
							| 36 | 30 35 | sselid |  |-  ( ph -> K e. ( 0 ... ( ( # ` A ) - 1 ) ) ) | 
						
							| 37 |  | lencl |  |-  ( A e. Word W -> ( # ` A ) e. NN0 ) | 
						
							| 38 | 27 37 | syl |  |-  ( ph -> ( # ` A ) e. NN0 ) | 
						
							| 39 | 38 | nn0zd |  |-  ( ph -> ( # ` A ) e. ZZ ) | 
						
							| 40 |  | fzoval |  |-  ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) | 
						
							| 42 | 36 41 | eleqtrrd |  |-  ( ph -> K e. ( 0 ..^ ( # ` A ) ) ) | 
						
							| 43 | 29 42 | ffvelcdmd |  |-  ( ph -> ( A ` K ) e. W ) | 
						
							| 44 | 23 43 | sselid |  |-  ( ph -> ( A ` K ) e. Word ( I X. 2o ) ) | 
						
							| 45 |  | lencl |  |-  ( ( A ` K ) e. Word ( I X. 2o ) -> ( # ` ( A ` K ) ) e. NN0 ) | 
						
							| 46 | 44 45 | syl |  |-  ( ph -> ( # ` ( A ` K ) ) e. NN0 ) | 
						
							| 47 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 48 | 46 47 | eleqtrdi |  |-  ( ph -> ( # ` ( A ` K ) ) e. ( ZZ>= ` 0 ) ) | 
						
							| 49 |  | eluzfz2 |  |-  ( ( # ` ( A ` K ) ) e. ( ZZ>= ` 0 ) -> ( # ` ( A ` K ) ) e. ( 0 ... ( # ` ( A ` K ) ) ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ph -> ( # ` ( A ` K ) ) e. ( 0 ... ( # ` ( A ` K ) ) ) ) | 
						
							| 51 |  | ccatpfx |  |-  ( ( ( A ` K ) e. Word ( I X. 2o ) /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ ( # ` ( A ` K ) ) e. ( 0 ... ( # ` ( A ` K ) ) ) ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) ) | 
						
							| 52 | 44 14 50 51 | syl3anc |  |-  ( ph -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) ) | 
						
							| 53 |  | pfxid |  |-  ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) = ( A ` K ) ) | 
						
							| 54 | 44 53 | syl |  |-  ( ph -> ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) = ( A ` K ) ) | 
						
							| 55 | 52 54 | eqtrd |  |-  ( ph -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( A ` K ) ) | 
						
							| 56 | 1 2 3 4 5 6 | efgsdm |  |-  ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) | 
						
							| 57 | 56 | simp1bi |  |-  ( B e. dom S -> B e. ( Word W \ { (/) } ) ) | 
						
							| 58 | 9 57 | syl |  |-  ( ph -> B e. ( Word W \ { (/) } ) ) | 
						
							| 59 | 58 | eldifad |  |-  ( ph -> B e. Word W ) | 
						
							| 60 |  | wrdf |  |-  ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) | 
						
							| 61 | 59 60 | syl |  |-  ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) | 
						
							| 62 |  | fzossfz |  |-  ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ... ( ( # ` B ) - 1 ) ) | 
						
							| 63 | 31 | simprd |  |-  ( ph -> ( ( # ` B ) - 1 ) e. NN ) | 
						
							| 64 |  | fzo0end |  |-  ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 65 | 63 64 | syl |  |-  ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 66 | 13 65 | eqeltrid |  |-  ( ph -> L e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 67 | 62 66 | sselid |  |-  ( ph -> L e. ( 0 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 68 |  | lencl |  |-  ( B e. Word W -> ( # ` B ) e. NN0 ) | 
						
							| 69 | 59 68 | syl |  |-  ( ph -> ( # ` B ) e. NN0 ) | 
						
							| 70 | 69 | nn0zd |  |-  ( ph -> ( # ` B ) e. ZZ ) | 
						
							| 71 |  | fzoval |  |-  ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 72 | 70 71 | syl |  |-  ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 73 | 67 72 | eleqtrrd |  |-  ( ph -> L e. ( 0 ..^ ( # ` B ) ) ) | 
						
							| 74 | 61 73 | ffvelcdmd |  |-  ( ph -> ( B ` L ) e. W ) | 
						
							| 75 | 23 74 | sselid |  |-  ( ph -> ( B ` L ) e. Word ( I X. 2o ) ) | 
						
							| 76 |  | lencl |  |-  ( ( B ` L ) e. Word ( I X. 2o ) -> ( # ` ( B ` L ) ) e. NN0 ) | 
						
							| 77 | 75 76 | syl |  |-  ( ph -> ( # ` ( B ` L ) ) e. NN0 ) | 
						
							| 78 | 77 47 | eleqtrdi |  |-  ( ph -> ( # ` ( B ` L ) ) e. ( ZZ>= ` 0 ) ) | 
						
							| 79 |  | eluzfz2 |  |-  ( ( # ` ( B ` L ) ) e. ( ZZ>= ` 0 ) -> ( # ` ( B ` L ) ) e. ( 0 ... ( # ` ( B ` L ) ) ) ) | 
						
							| 80 | 78 79 | syl |  |-  ( ph -> ( # ` ( B ` L ) ) e. ( 0 ... ( # ` ( B ` L ) ) ) ) | 
						
							| 81 |  | ccatpfx |  |-  ( ( ( B ` L ) e. Word ( I X. 2o ) /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ ( # ` ( B ` L ) ) e. ( 0 ... ( # ` ( B ` L ) ) ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) ) | 
						
							| 82 | 75 15 80 81 | syl3anc |  |-  ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) ) | 
						
							| 83 |  | pfxid |  |-  ( ( B ` L ) e. Word ( I X. 2o ) -> ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) = ( B ` L ) ) | 
						
							| 84 | 75 83 | syl |  |-  ( ph -> ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) = ( B ` L ) ) | 
						
							| 85 | 82 84 | eqtrd |  |-  ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( B ` L ) ) | 
						
							| 86 | 55 85 | eqeq12d |  |-  ( ph -> ( ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( A ` K ) = ( B ` L ) ) ) | 
						
							| 87 | 20 86 | mtbird |  |-  ( ph -> -. ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 88 | 1 2 3 4 | efgtval |  |-  ( ( ( A ` K ) e. W /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ U e. ( I X. 2o ) ) -> ( P ( T ` ( A ` K ) ) U ) = ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) ) | 
						
							| 89 | 43 14 16 88 | syl3anc |  |-  ( ph -> ( P ( T ` ( A ` K ) ) U ) = ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) ) | 
						
							| 90 | 3 | efgmf |  |-  M : ( I X. 2o ) --> ( I X. 2o ) | 
						
							| 91 | 90 | ffvelcdmi |  |-  ( U e. ( I X. 2o ) -> ( M ` U ) e. ( I X. 2o ) ) | 
						
							| 92 | 16 91 | syl |  |-  ( ph -> ( M ` U ) e. ( I X. 2o ) ) | 
						
							| 93 | 16 92 | s2cld |  |-  ( ph -> <" U ( M ` U ) "> e. Word ( I X. 2o ) ) | 
						
							| 94 |  | splval |  |-  ( ( ( A ` K ) e. W /\ ( P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) ) -> ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) | 
						
							| 95 | 43 14 14 93 94 | syl13anc |  |-  ( ph -> ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) | 
						
							| 96 | 18 89 95 | 3eqtrd |  |-  ( ph -> ( S ` A ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) | 
						
							| 97 | 1 2 3 4 | efgtval |  |-  ( ( ( B ` L ) e. W /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ V e. ( I X. 2o ) ) -> ( Q ( T ` ( B ` L ) ) V ) = ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) ) | 
						
							| 98 | 74 15 17 97 | syl3anc |  |-  ( ph -> ( Q ( T ` ( B ` L ) ) V ) = ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) ) | 
						
							| 99 | 90 | ffvelcdmi |  |-  ( V e. ( I X. 2o ) -> ( M ` V ) e. ( I X. 2o ) ) | 
						
							| 100 | 17 99 | syl |  |-  ( ph -> ( M ` V ) e. ( I X. 2o ) ) | 
						
							| 101 | 17 100 | s2cld |  |-  ( ph -> <" V ( M ` V ) "> e. Word ( I X. 2o ) ) | 
						
							| 102 |  | splval |  |-  ( ( ( B ` L ) e. W /\ ( Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) ) -> ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 103 | 74 15 15 101 102 | syl13anc |  |-  ( ph -> ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 104 | 19 98 103 | 3eqtrd |  |-  ( ph -> ( S ` B ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 105 | 10 96 104 | 3eqtr3d |  |-  ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ P = Q ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 107 |  | pfxcl |  |-  ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) | 
						
							| 108 | 44 107 | syl |  |-  ( ph -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ph /\ P = Q ) -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) | 
						
							| 110 | 93 | adantr |  |-  ( ( ph /\ P = Q ) -> <" U ( M ` U ) "> e. Word ( I X. 2o ) ) | 
						
							| 111 |  | ccatcl |  |-  ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 112 | 109 110 111 | syl2anc |  |-  ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 113 |  | swrdcl |  |-  ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 114 | 44 113 | syl |  |-  ( ph -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ph /\ P = Q ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 116 |  | pfxcl |  |-  ( ( B ` L ) e. Word ( I X. 2o ) -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) | 
						
							| 117 | 75 116 | syl |  |-  ( ph -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ph /\ P = Q ) -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) | 
						
							| 119 | 101 | adantr |  |-  ( ( ph /\ P = Q ) -> <" V ( M ` V ) "> e. Word ( I X. 2o ) ) | 
						
							| 120 |  | ccatcl |  |-  ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 121 | 118 119 120 | syl2anc |  |-  ( ( ph /\ P = Q ) -> ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 122 |  | swrdcl |  |-  ( ( B ` L ) e. Word ( I X. 2o ) -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 123 | 75 122 | syl |  |-  ( ph -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ph /\ P = Q ) -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 125 |  | pfxlen |  |-  ( ( ( A ` K ) e. Word ( I X. 2o ) /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) ) -> ( # ` ( ( A ` K ) prefix P ) ) = P ) | 
						
							| 126 | 44 14 125 | syl2anc |  |-  ( ph -> ( # ` ( ( A ` K ) prefix P ) ) = P ) | 
						
							| 127 |  | pfxlen |  |-  ( ( ( B ` L ) e. Word ( I X. 2o ) /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) -> ( # ` ( ( B ` L ) prefix Q ) ) = Q ) | 
						
							| 128 | 75 15 127 | syl2anc |  |-  ( ph -> ( # ` ( ( B ` L ) prefix Q ) ) = Q ) | 
						
							| 129 | 126 128 | eqeq12d |  |-  ( ph -> ( ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( B ` L ) prefix Q ) ) <-> P = Q ) ) | 
						
							| 130 | 129 | biimpar |  |-  ( ( ph /\ P = Q ) -> ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( B ` L ) prefix Q ) ) ) | 
						
							| 131 |  | s2len |  |-  ( # ` <" U ( M ` U ) "> ) = 2 | 
						
							| 132 |  | s2len |  |-  ( # ` <" V ( M ` V ) "> ) = 2 | 
						
							| 133 | 131 132 | eqtr4i |  |-  ( # ` <" U ( M ` U ) "> ) = ( # ` <" V ( M ` V ) "> ) | 
						
							| 134 | 133 | a1i |  |-  ( ( ph /\ P = Q ) -> ( # ` <" U ( M ` U ) "> ) = ( # ` <" V ( M ` V ) "> ) ) | 
						
							| 135 | 130 134 | oveq12d |  |-  ( ( ph /\ P = Q ) -> ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U ( M ` U ) "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V ( M ` V ) "> ) ) ) | 
						
							| 136 |  | ccatlen |  |-  ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U ( M ` U ) "> ) ) ) | 
						
							| 137 | 109 110 136 | syl2anc |  |-  ( ( ph /\ P = Q ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U ( M ` U ) "> ) ) ) | 
						
							| 138 |  | ccatlen |  |-  ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V ( M ` V ) "> ) ) ) | 
						
							| 139 | 118 119 138 | syl2anc |  |-  ( ( ph /\ P = Q ) -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V ( M ` V ) "> ) ) ) | 
						
							| 140 | 135 137 139 | 3eqtr4d |  |-  ( ( ph /\ P = Q ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) ) | 
						
							| 141 |  | ccatopth |  |-  ( ( ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) /\ ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) e. Word ( I X. 2o ) /\ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) /\ ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) | 
						
							| 142 | 112 115 121 124 140 141 | syl221anc |  |-  ( ( ph /\ P = Q ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) | 
						
							| 143 | 106 142 | mpbid |  |-  ( ( ph /\ P = Q ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 144 | 143 | simpld |  |-  ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) | 
						
							| 145 |  | ccatopth |  |-  ( ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) /\ ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) /\ ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( B ` L ) prefix Q ) ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) /\ <" U ( M ` U ) "> = <" V ( M ` V ) "> ) ) ) | 
						
							| 146 | 109 110 118 119 130 145 | syl221anc |  |-  ( ( ph /\ P = Q ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) /\ <" U ( M ` U ) "> = <" V ( M ` V ) "> ) ) ) | 
						
							| 147 | 144 146 | mpbid |  |-  ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) /\ <" U ( M ` U ) "> = <" V ( M ` V ) "> ) ) | 
						
							| 148 | 147 | simpld |  |-  ( ( ph /\ P = Q ) -> ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) ) | 
						
							| 149 | 143 | simprd |  |-  ( ( ph /\ P = Q ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) | 
						
							| 150 | 148 149 | oveq12d |  |-  ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 151 | 87 150 | mtand |  |-  ( ph -> -. P = Q ) | 
						
							| 152 | 151 | pm2.21d |  |-  ( ph -> ( P = Q -> ( A ` 0 ) = ( B ` 0 ) ) ) | 
						
							| 153 |  | uzp1 |  |-  ( P e. ( ZZ>= ` ( Q + 1 ) ) -> ( P = ( Q + 1 ) \/ P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) ) ) | 
						
							| 154 | 16 | s1cld |  |-  ( ph -> <" U "> e. Word ( I X. 2o ) ) | 
						
							| 155 |  | ccatcl |  |-  ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) ) | 
						
							| 156 | 108 154 155 | syl2anc |  |-  ( ph -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) ) | 
						
							| 157 | 92 | s1cld |  |-  ( ph -> <" ( M ` U ) "> e. Word ( I X. 2o ) ) | 
						
							| 158 |  | ccatass |  |-  ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) /\ <" ( M ` U ) "> e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) | 
						
							| 159 | 156 157 114 158 | syl3anc |  |-  ( ph -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) | 
						
							| 160 |  | ccatass |  |-  ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) /\ <" ( M ` U ) "> e. Word ( I X. 2o ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ ( <" U "> ++ <" ( M ` U ) "> ) ) ) | 
						
							| 161 | 108 154 157 160 | syl3anc |  |-  ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ ( <" U "> ++ <" ( M ` U ) "> ) ) ) | 
						
							| 162 |  | df-s2 |  |-  <" U ( M ` U ) "> = ( <" U "> ++ <" ( M ` U ) "> ) | 
						
							| 163 | 162 | oveq2i |  |-  ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ ( <" U "> ++ <" ( M ` U ) "> ) ) | 
						
							| 164 | 161 163 | eqtr4di |  |-  ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) | 
						
							| 165 | 164 | oveq1d |  |-  ( ph -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) | 
						
							| 166 | 17 | s1cld |  |-  ( ph -> <" V "> e. Word ( I X. 2o ) ) | 
						
							| 167 | 100 | s1cld |  |-  ( ph -> <" ( M ` V ) "> e. Word ( I X. 2o ) ) | 
						
							| 168 |  | ccatass |  |-  ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ <" ( M ` V ) "> ) ) ) | 
						
							| 169 | 117 166 167 168 | syl3anc |  |-  ( ph -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ <" ( M ` V ) "> ) ) ) | 
						
							| 170 |  | df-s2 |  |-  <" V ( M ` V ) "> = ( <" V "> ++ <" ( M ` V ) "> ) | 
						
							| 171 | 170 | oveq2i |  |-  ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ <" ( M ` V ) "> ) ) | 
						
							| 172 | 169 171 | eqtr4di |  |-  ( ph -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) | 
						
							| 173 | 172 | oveq1d |  |-  ( ph -> ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 174 | 105 165 173 | 3eqtr4d |  |-  ( ph -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 175 | 159 174 | eqtr3d |  |-  ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 176 | 175 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 177 | 156 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) ) | 
						
							| 178 | 157 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> <" ( M ` U ) "> e. Word ( I X. 2o ) ) | 
						
							| 179 | 114 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 180 |  | ccatcl |  |-  ( ( <" ( M ` U ) "> e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) | 
						
							| 181 | 178 179 180 | syl2anc |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) | 
						
							| 182 |  | ccatcl |  |-  ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) ) -> ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) ) | 
						
							| 183 | 117 166 182 | syl2anc |  |-  ( ph -> ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) ) | 
						
							| 184 | 183 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) ) | 
						
							| 185 | 167 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> <" ( M ` V ) "> e. Word ( I X. 2o ) ) | 
						
							| 186 |  | ccatcl |  |-  ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 187 | 184 185 186 | syl2anc |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 188 | 123 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 189 |  | ccatlen |  |-  ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V "> ) ) ) | 
						
							| 190 | 117 166 189 | syl2anc |  |-  ( ph -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V "> ) ) ) | 
						
							| 191 |  | s1len |  |-  ( # ` <" V "> ) = 1 | 
						
							| 192 | 191 | a1i |  |-  ( ph -> ( # ` <" V "> ) = 1 ) | 
						
							| 193 | 128 192 | oveq12d |  |-  ( ph -> ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V "> ) ) = ( Q + 1 ) ) | 
						
							| 194 | 190 193 | eqtrd |  |-  ( ph -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) = ( Q + 1 ) ) | 
						
							| 195 | 126 194 | eqeq12d |  |-  ( ph -> ( ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) <-> P = ( Q + 1 ) ) ) | 
						
							| 196 | 195 | biimpar |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) ) | 
						
							| 197 |  | s1len |  |-  ( # ` <" U "> ) = 1 | 
						
							| 198 |  | s1len |  |-  ( # ` <" ( M ` V ) "> ) = 1 | 
						
							| 199 | 197 198 | eqtr4i |  |-  ( # ` <" U "> ) = ( # ` <" ( M ` V ) "> ) | 
						
							| 200 | 199 | a1i |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` <" U "> ) = ( # ` <" ( M ` V ) "> ) ) | 
						
							| 201 | 196 200 | oveq12d |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U "> ) ) = ( ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) + ( # ` <" ( M ` V ) "> ) ) ) | 
						
							| 202 | 108 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) | 
						
							| 203 | 154 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> <" U "> e. Word ( I X. 2o ) ) | 
						
							| 204 |  | ccatlen |  |-  ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U "> ) ) ) | 
						
							| 205 | 202 203 204 | syl2anc |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U "> ) ) ) | 
						
							| 206 |  | ccatlen |  |-  ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) = ( ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) + ( # ` <" ( M ` V ) "> ) ) ) | 
						
							| 207 | 184 185 206 | syl2anc |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) = ( ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) + ( # ` <" ( M ` V ) "> ) ) ) | 
						
							| 208 | 201 205 207 | 3eqtr4d |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) ) | 
						
							| 209 |  | ccatopth |  |-  ( ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) /\ ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) e. Word ( I X. 2o ) /\ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) /\ ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) | 
						
							| 210 | 177 181 187 188 208 209 | syl221anc |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) | 
						
							| 211 | 176 210 | mpbid |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 212 | 211 | simpld |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) | 
						
							| 213 |  | ccatopth |  |-  ( ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) ) /\ ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) /\ ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) /\ <" U "> = <" ( M ` V ) "> ) ) ) | 
						
							| 214 | 202 203 184 185 196 213 | syl221anc |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) /\ <" U "> = <" ( M ` V ) "> ) ) ) | 
						
							| 215 | 212 214 | mpbid |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) /\ <" U "> = <" ( M ` V ) "> ) ) | 
						
							| 216 | 215 | simpld |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) | 
						
							| 217 | 216 | oveq1d |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) | 
						
							| 218 | 117 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) | 
						
							| 219 | 166 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> <" V "> e. Word ( I X. 2o ) ) | 
						
							| 220 |  | ccatass |  |-  ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) | 
						
							| 221 | 218 219 179 220 | syl3anc |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) | 
						
							| 222 | 215 | simprd |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> <" U "> = <" ( M ` V ) "> ) | 
						
							| 223 |  | s111 |  |-  ( ( U e. ( I X. 2o ) /\ ( M ` V ) e. ( I X. 2o ) ) -> ( <" U "> = <" ( M ` V ) "> <-> U = ( M ` V ) ) ) | 
						
							| 224 | 16 100 223 | syl2anc |  |-  ( ph -> ( <" U "> = <" ( M ` V ) "> <-> U = ( M ` V ) ) ) | 
						
							| 225 | 224 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( <" U "> = <" ( M ` V ) "> <-> U = ( M ` V ) ) ) | 
						
							| 226 | 222 225 | mpbid |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> U = ( M ` V ) ) | 
						
							| 227 | 226 | fveq2d |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( M ` U ) = ( M ` ( M ` V ) ) ) | 
						
							| 228 | 3 | efgmnvl |  |-  ( V e. ( I X. 2o ) -> ( M ` ( M ` V ) ) = V ) | 
						
							| 229 | 17 228 | syl |  |-  ( ph -> ( M ` ( M ` V ) ) = V ) | 
						
							| 230 | 229 | adantr |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( M ` ( M ` V ) ) = V ) | 
						
							| 231 | 227 230 | eqtrd |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( M ` U ) = V ) | 
						
							| 232 | 231 | s1eqd |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> <" ( M ` U ) "> = <" V "> ) | 
						
							| 233 | 232 | oveq1d |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) | 
						
							| 234 | 211 | simprd |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) | 
						
							| 235 | 233 234 | eqtr3d |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) | 
						
							| 236 | 235 | oveq2d |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 237 | 217 221 236 | 3eqtrd |  |-  ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) | 
						
							| 238 | 87 237 | mtand |  |-  ( ph -> -. P = ( Q + 1 ) ) | 
						
							| 239 | 238 | pm2.21d |  |-  ( ph -> ( P = ( Q + 1 ) -> ( A ` 0 ) = ( B ` 0 ) ) ) | 
						
							| 240 | 15 | elfzelzd |  |-  ( ph -> Q e. ZZ ) | 
						
							| 241 | 240 | zcnd |  |-  ( ph -> Q e. CC ) | 
						
							| 242 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 243 | 241 242 242 | addassd |  |-  ( ph -> ( ( Q + 1 ) + 1 ) = ( Q + ( 1 + 1 ) ) ) | 
						
							| 244 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 245 | 244 | oveq2i |  |-  ( Q + 2 ) = ( Q + ( 1 + 1 ) ) | 
						
							| 246 | 243 245 | eqtr4di |  |-  ( ph -> ( ( Q + 1 ) + 1 ) = ( Q + 2 ) ) | 
						
							| 247 | 246 | fveq2d |  |-  ( ph -> ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) = ( ZZ>= ` ( Q + 2 ) ) ) | 
						
							| 248 | 247 | eleq2d |  |-  ( ph -> ( P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) <-> P e. ( ZZ>= ` ( Q + 2 ) ) ) ) | 
						
							| 249 | 1 2 3 4 5 6 | efgsfo |  |-  S : dom S -onto-> W | 
						
							| 250 |  | swrdcl |  |-  ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 251 | 44 250 | syl |  |-  ( ph -> ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 252 |  | ccatcl |  |-  ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) | 
						
							| 253 | 117 251 252 | syl2anc |  |-  ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) | 
						
							| 254 | 1 | efgrcl |  |-  ( ( A ` K ) e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) | 
						
							| 255 | 43 254 | syl |  |-  ( ph -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) | 
						
							| 256 | 255 | simprd |  |-  ( ph -> W = Word ( I X. 2o ) ) | 
						
							| 257 | 253 256 | eleqtrrd |  |-  ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. W ) | 
						
							| 258 |  | foelrn |  |-  ( ( S : dom S -onto-> W /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. W ) -> E. c e. dom S ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) | 
						
							| 259 | 249 257 258 | sylancr |  |-  ( ph -> E. c e. dom S ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) | 
						
							| 260 | 259 | adantr |  |-  ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) -> E. c e. dom S ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) | 
						
							| 261 | 7 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) | 
						
							| 262 | 8 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> A e. dom S ) | 
						
							| 263 | 9 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> B e. dom S ) | 
						
							| 264 | 10 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` A ) = ( S ` B ) ) | 
						
							| 265 | 11 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> -. ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 266 | 14 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) | 
						
							| 267 | 15 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) | 
						
							| 268 | 16 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> U e. ( I X. 2o ) ) | 
						
							| 269 | 17 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> V e. ( I X. 2o ) ) | 
						
							| 270 | 18 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) | 
						
							| 271 | 19 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) | 
						
							| 272 | 20 | ad2antrr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> -. ( A ` K ) = ( B ` L ) ) | 
						
							| 273 |  | simplr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> P e. ( ZZ>= ` ( Q + 2 ) ) ) | 
						
							| 274 |  | simprl |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> c e. dom S ) | 
						
							| 275 |  | simprr |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) | 
						
							| 276 | 275 | eqcomd |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` c ) = ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) ) | 
						
							| 277 | 1 2 3 4 5 6 261 262 263 264 265 12 13 266 267 268 269 270 271 272 273 274 276 | efgredlemd |  |-  ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 278 | 260 277 | rexlimddv |  |-  ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 279 | 278 | ex |  |-  ( ph -> ( P e. ( ZZ>= ` ( Q + 2 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) | 
						
							| 280 | 248 279 | sylbid |  |-  ( ph -> ( P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) | 
						
							| 281 | 239 280 | jaod |  |-  ( ph -> ( ( P = ( Q + 1 ) \/ P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) | 
						
							| 282 | 153 281 | syl5 |  |-  ( ph -> ( P e. ( ZZ>= ` ( Q + 1 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) | 
						
							| 283 | 152 282 | jaod |  |-  ( ph -> ( ( P = Q \/ P e. ( ZZ>= ` ( Q + 1 ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) | 
						
							| 284 | 21 283 | syl5 |  |-  ( ph -> ( P e. ( ZZ>= ` Q ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |