| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
| 2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
| 3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
| 4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
| 5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
| 6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
| 7 |
|
efgredlem.1 |
|- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 8 |
|
efgredlem.2 |
|- ( ph -> A e. dom S ) |
| 9 |
|
efgredlem.3 |
|- ( ph -> B e. dom S ) |
| 10 |
|
efgredlem.4 |
|- ( ph -> ( S ` A ) = ( S ` B ) ) |
| 11 |
|
efgredlem.5 |
|- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
| 12 |
|
efgredlemb.k |
|- K = ( ( ( # ` A ) - 1 ) - 1 ) |
| 13 |
|
efgredlemb.l |
|- L = ( ( ( # ` B ) - 1 ) - 1 ) |
| 14 |
|
efgredlemb.p |
|- ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
| 15 |
|
efgredlemb.q |
|- ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
| 16 |
|
efgredlemb.u |
|- ( ph -> U e. ( I X. 2o ) ) |
| 17 |
|
efgredlemb.v |
|- ( ph -> V e. ( I X. 2o ) ) |
| 18 |
|
efgredlemb.6 |
|- ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
| 19 |
|
efgredlemb.7 |
|- ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
| 20 |
|
efgredlemb.8 |
|- ( ph -> -. ( A ` K ) = ( B ` L ) ) |
| 21 |
|
uzp1 |
|- ( P e. ( ZZ>= ` Q ) -> ( P = Q \/ P e. ( ZZ>= ` ( Q + 1 ) ) ) ) |
| 22 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
| 23 |
1 22
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
| 24 |
1 2 3 4 5 6
|
efgsdm |
|- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
| 25 |
24
|
simp1bi |
|- ( A e. dom S -> A e. ( Word W \ { (/) } ) ) |
| 26 |
8 25
|
syl |
|- ( ph -> A e. ( Word W \ { (/) } ) ) |
| 27 |
26
|
eldifad |
|- ( ph -> A e. Word W ) |
| 28 |
|
wrdf |
|- ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
| 29 |
27 28
|
syl |
|- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
| 30 |
|
fzossfz |
|- ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ... ( ( # ` A ) - 1 ) ) |
| 31 |
1 2 3 4 5 6 7 8 9 10 11
|
efgredlema |
|- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |
| 32 |
31
|
simpld |
|- ( ph -> ( ( # ` A ) - 1 ) e. NN ) |
| 33 |
|
fzo0end |
|- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 34 |
32 33
|
syl |
|- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 35 |
12 34
|
eqeltrid |
|- ( ph -> K e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 36 |
30 35
|
sselid |
|- ( ph -> K e. ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 37 |
|
lencl |
|- ( A e. Word W -> ( # ` A ) e. NN0 ) |
| 38 |
27 37
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
| 39 |
38
|
nn0zd |
|- ( ph -> ( # ` A ) e. ZZ ) |
| 40 |
|
fzoval |
|- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 41 |
39 40
|
syl |
|- ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 42 |
36 41
|
eleqtrrd |
|- ( ph -> K e. ( 0 ..^ ( # ` A ) ) ) |
| 43 |
29 42
|
ffvelcdmd |
|- ( ph -> ( A ` K ) e. W ) |
| 44 |
23 43
|
sselid |
|- ( ph -> ( A ` K ) e. Word ( I X. 2o ) ) |
| 45 |
|
lencl |
|- ( ( A ` K ) e. Word ( I X. 2o ) -> ( # ` ( A ` K ) ) e. NN0 ) |
| 46 |
44 45
|
syl |
|- ( ph -> ( # ` ( A ` K ) ) e. NN0 ) |
| 47 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 48 |
46 47
|
eleqtrdi |
|- ( ph -> ( # ` ( A ` K ) ) e. ( ZZ>= ` 0 ) ) |
| 49 |
|
eluzfz2 |
|- ( ( # ` ( A ` K ) ) e. ( ZZ>= ` 0 ) -> ( # ` ( A ` K ) ) e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
| 50 |
48 49
|
syl |
|- ( ph -> ( # ` ( A ` K ) ) e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
| 51 |
|
ccatpfx |
|- ( ( ( A ` K ) e. Word ( I X. 2o ) /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ ( # ` ( A ` K ) ) e. ( 0 ... ( # ` ( A ` K ) ) ) ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) ) |
| 52 |
44 14 50 51
|
syl3anc |
|- ( ph -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) ) |
| 53 |
|
pfxid |
|- ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) = ( A ` K ) ) |
| 54 |
44 53
|
syl |
|- ( ph -> ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) = ( A ` K ) ) |
| 55 |
52 54
|
eqtrd |
|- ( ph -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( A ` K ) ) |
| 56 |
1 2 3 4 5 6
|
efgsdm |
|- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
| 57 |
56
|
simp1bi |
|- ( B e. dom S -> B e. ( Word W \ { (/) } ) ) |
| 58 |
9 57
|
syl |
|- ( ph -> B e. ( Word W \ { (/) } ) ) |
| 59 |
58
|
eldifad |
|- ( ph -> B e. Word W ) |
| 60 |
|
wrdf |
|- ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
| 61 |
59 60
|
syl |
|- ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
| 62 |
|
fzossfz |
|- ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ... ( ( # ` B ) - 1 ) ) |
| 63 |
31
|
simprd |
|- ( ph -> ( ( # ` B ) - 1 ) e. NN ) |
| 64 |
|
fzo0end |
|- ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 65 |
63 64
|
syl |
|- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 66 |
13 65
|
eqeltrid |
|- ( ph -> L e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 67 |
62 66
|
sselid |
|- ( ph -> L e. ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 68 |
|
lencl |
|- ( B e. Word W -> ( # ` B ) e. NN0 ) |
| 69 |
59 68
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 70 |
69
|
nn0zd |
|- ( ph -> ( # ` B ) e. ZZ ) |
| 71 |
|
fzoval |
|- ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 72 |
70 71
|
syl |
|- ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 73 |
67 72
|
eleqtrrd |
|- ( ph -> L e. ( 0 ..^ ( # ` B ) ) ) |
| 74 |
61 73
|
ffvelcdmd |
|- ( ph -> ( B ` L ) e. W ) |
| 75 |
23 74
|
sselid |
|- ( ph -> ( B ` L ) e. Word ( I X. 2o ) ) |
| 76 |
|
lencl |
|- ( ( B ` L ) e. Word ( I X. 2o ) -> ( # ` ( B ` L ) ) e. NN0 ) |
| 77 |
75 76
|
syl |
|- ( ph -> ( # ` ( B ` L ) ) e. NN0 ) |
| 78 |
77 47
|
eleqtrdi |
|- ( ph -> ( # ` ( B ` L ) ) e. ( ZZ>= ` 0 ) ) |
| 79 |
|
eluzfz2 |
|- ( ( # ` ( B ` L ) ) e. ( ZZ>= ` 0 ) -> ( # ` ( B ` L ) ) e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
| 80 |
78 79
|
syl |
|- ( ph -> ( # ` ( B ` L ) ) e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
| 81 |
|
ccatpfx |
|- ( ( ( B ` L ) e. Word ( I X. 2o ) /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ ( # ` ( B ` L ) ) e. ( 0 ... ( # ` ( B ` L ) ) ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) ) |
| 82 |
75 15 80 81
|
syl3anc |
|- ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) ) |
| 83 |
|
pfxid |
|- ( ( B ` L ) e. Word ( I X. 2o ) -> ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) = ( B ` L ) ) |
| 84 |
75 83
|
syl |
|- ( ph -> ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) = ( B ` L ) ) |
| 85 |
82 84
|
eqtrd |
|- ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( B ` L ) ) |
| 86 |
55 85
|
eqeq12d |
|- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( A ` K ) = ( B ` L ) ) ) |
| 87 |
20 86
|
mtbird |
|- ( ph -> -. ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 88 |
1 2 3 4
|
efgtval |
|- ( ( ( A ` K ) e. W /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ U e. ( I X. 2o ) ) -> ( P ( T ` ( A ` K ) ) U ) = ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) ) |
| 89 |
43 14 16 88
|
syl3anc |
|- ( ph -> ( P ( T ` ( A ` K ) ) U ) = ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) ) |
| 90 |
3
|
efgmf |
|- M : ( I X. 2o ) --> ( I X. 2o ) |
| 91 |
90
|
ffvelcdmi |
|- ( U e. ( I X. 2o ) -> ( M ` U ) e. ( I X. 2o ) ) |
| 92 |
16 91
|
syl |
|- ( ph -> ( M ` U ) e. ( I X. 2o ) ) |
| 93 |
16 92
|
s2cld |
|- ( ph -> <" U ( M ` U ) "> e. Word ( I X. 2o ) ) |
| 94 |
|
splval |
|- ( ( ( A ` K ) e. W /\ ( P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) ) -> ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 95 |
43 14 14 93 94
|
syl13anc |
|- ( ph -> ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 96 |
18 89 95
|
3eqtrd |
|- ( ph -> ( S ` A ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 97 |
1 2 3 4
|
efgtval |
|- ( ( ( B ` L ) e. W /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ V e. ( I X. 2o ) ) -> ( Q ( T ` ( B ` L ) ) V ) = ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) ) |
| 98 |
74 15 17 97
|
syl3anc |
|- ( ph -> ( Q ( T ` ( B ` L ) ) V ) = ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) ) |
| 99 |
90
|
ffvelcdmi |
|- ( V e. ( I X. 2o ) -> ( M ` V ) e. ( I X. 2o ) ) |
| 100 |
17 99
|
syl |
|- ( ph -> ( M ` V ) e. ( I X. 2o ) ) |
| 101 |
17 100
|
s2cld |
|- ( ph -> <" V ( M ` V ) "> e. Word ( I X. 2o ) ) |
| 102 |
|
splval |
|- ( ( ( B ` L ) e. W /\ ( Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) ) -> ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 103 |
74 15 15 101 102
|
syl13anc |
|- ( ph -> ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 104 |
19 98 103
|
3eqtrd |
|- ( ph -> ( S ` B ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 105 |
10 96 104
|
3eqtr3d |
|- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ P = Q ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 107 |
|
pfxcl |
|- ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) |
| 108 |
44 107
|
syl |
|- ( ph -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ P = Q ) -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) |
| 110 |
93
|
adantr |
|- ( ( ph /\ P = Q ) -> <" U ( M ` U ) "> e. Word ( I X. 2o ) ) |
| 111 |
|
ccatcl |
|- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) e. Word ( I X. 2o ) ) |
| 112 |
109 110 111
|
syl2anc |
|- ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) e. Word ( I X. 2o ) ) |
| 113 |
|
swrdcl |
|- ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 114 |
44 113
|
syl |
|- ( ph -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 115 |
114
|
adantr |
|- ( ( ph /\ P = Q ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 116 |
|
pfxcl |
|- ( ( B ` L ) e. Word ( I X. 2o ) -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) |
| 117 |
75 116
|
syl |
|- ( ph -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) |
| 118 |
117
|
adantr |
|- ( ( ph /\ P = Q ) -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) |
| 119 |
101
|
adantr |
|- ( ( ph /\ P = Q ) -> <" V ( M ` V ) "> e. Word ( I X. 2o ) ) |
| 120 |
|
ccatcl |
|- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) e. Word ( I X. 2o ) ) |
| 121 |
118 119 120
|
syl2anc |
|- ( ( ph /\ P = Q ) -> ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) e. Word ( I X. 2o ) ) |
| 122 |
|
swrdcl |
|- ( ( B ` L ) e. Word ( I X. 2o ) -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) |
| 123 |
75 122
|
syl |
|- ( ph -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) |
| 124 |
123
|
adantr |
|- ( ( ph /\ P = Q ) -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) |
| 125 |
|
pfxlen |
|- ( ( ( A ` K ) e. Word ( I X. 2o ) /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) ) -> ( # ` ( ( A ` K ) prefix P ) ) = P ) |
| 126 |
44 14 125
|
syl2anc |
|- ( ph -> ( # ` ( ( A ` K ) prefix P ) ) = P ) |
| 127 |
|
pfxlen |
|- ( ( ( B ` L ) e. Word ( I X. 2o ) /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) -> ( # ` ( ( B ` L ) prefix Q ) ) = Q ) |
| 128 |
75 15 127
|
syl2anc |
|- ( ph -> ( # ` ( ( B ` L ) prefix Q ) ) = Q ) |
| 129 |
126 128
|
eqeq12d |
|- ( ph -> ( ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( B ` L ) prefix Q ) ) <-> P = Q ) ) |
| 130 |
129
|
biimpar |
|- ( ( ph /\ P = Q ) -> ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( B ` L ) prefix Q ) ) ) |
| 131 |
|
s2len |
|- ( # ` <" U ( M ` U ) "> ) = 2 |
| 132 |
|
s2len |
|- ( # ` <" V ( M ` V ) "> ) = 2 |
| 133 |
131 132
|
eqtr4i |
|- ( # ` <" U ( M ` U ) "> ) = ( # ` <" V ( M ` V ) "> ) |
| 134 |
133
|
a1i |
|- ( ( ph /\ P = Q ) -> ( # ` <" U ( M ` U ) "> ) = ( # ` <" V ( M ` V ) "> ) ) |
| 135 |
130 134
|
oveq12d |
|- ( ( ph /\ P = Q ) -> ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U ( M ` U ) "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V ( M ` V ) "> ) ) ) |
| 136 |
|
ccatlen |
|- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U ( M ` U ) "> ) ) ) |
| 137 |
109 110 136
|
syl2anc |
|- ( ( ph /\ P = Q ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U ( M ` U ) "> ) ) ) |
| 138 |
|
ccatlen |
|- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V ( M ` V ) "> ) ) ) |
| 139 |
118 119 138
|
syl2anc |
|- ( ( ph /\ P = Q ) -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V ( M ` V ) "> ) ) ) |
| 140 |
135 137 139
|
3eqtr4d |
|- ( ( ph /\ P = Q ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) ) |
| 141 |
|
ccatopth |
|- ( ( ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) /\ ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) e. Word ( I X. 2o ) /\ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) /\ ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) |
| 142 |
112 115 121 124 140 141
|
syl221anc |
|- ( ( ph /\ P = Q ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) |
| 143 |
106 142
|
mpbid |
|- ( ( ph /\ P = Q ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 144 |
143
|
simpld |
|- ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) |
| 145 |
|
ccatopth |
|- ( ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) /\ ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) /\ ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( B ` L ) prefix Q ) ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) /\ <" U ( M ` U ) "> = <" V ( M ` V ) "> ) ) ) |
| 146 |
109 110 118 119 130 145
|
syl221anc |
|- ( ( ph /\ P = Q ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) /\ <" U ( M ` U ) "> = <" V ( M ` V ) "> ) ) ) |
| 147 |
144 146
|
mpbid |
|- ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) /\ <" U ( M ` U ) "> = <" V ( M ` V ) "> ) ) |
| 148 |
147
|
simpld |
|- ( ( ph /\ P = Q ) -> ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) ) |
| 149 |
143
|
simprd |
|- ( ( ph /\ P = Q ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) |
| 150 |
148 149
|
oveq12d |
|- ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 151 |
87 150
|
mtand |
|- ( ph -> -. P = Q ) |
| 152 |
151
|
pm2.21d |
|- ( ph -> ( P = Q -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 153 |
|
uzp1 |
|- ( P e. ( ZZ>= ` ( Q + 1 ) ) -> ( P = ( Q + 1 ) \/ P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) ) ) |
| 154 |
16
|
s1cld |
|- ( ph -> <" U "> e. Word ( I X. 2o ) ) |
| 155 |
|
ccatcl |
|- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) ) |
| 156 |
108 154 155
|
syl2anc |
|- ( ph -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) ) |
| 157 |
92
|
s1cld |
|- ( ph -> <" ( M ` U ) "> e. Word ( I X. 2o ) ) |
| 158 |
|
ccatass |
|- ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) /\ <" ( M ` U ) "> e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) |
| 159 |
156 157 114 158
|
syl3anc |
|- ( ph -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) |
| 160 |
|
ccatass |
|- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) /\ <" ( M ` U ) "> e. Word ( I X. 2o ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ ( <" U "> ++ <" ( M ` U ) "> ) ) ) |
| 161 |
108 154 157 160
|
syl3anc |
|- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ ( <" U "> ++ <" ( M ` U ) "> ) ) ) |
| 162 |
|
df-s2 |
|- <" U ( M ` U ) "> = ( <" U "> ++ <" ( M ` U ) "> ) |
| 163 |
162
|
oveq2i |
|- ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ ( <" U "> ++ <" ( M ` U ) "> ) ) |
| 164 |
161 163
|
eqtr4di |
|- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) |
| 165 |
164
|
oveq1d |
|- ( ph -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 166 |
17
|
s1cld |
|- ( ph -> <" V "> e. Word ( I X. 2o ) ) |
| 167 |
100
|
s1cld |
|- ( ph -> <" ( M ` V ) "> e. Word ( I X. 2o ) ) |
| 168 |
|
ccatass |
|- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ <" ( M ` V ) "> ) ) ) |
| 169 |
117 166 167 168
|
syl3anc |
|- ( ph -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ <" ( M ` V ) "> ) ) ) |
| 170 |
|
df-s2 |
|- <" V ( M ` V ) "> = ( <" V "> ++ <" ( M ` V ) "> ) |
| 171 |
170
|
oveq2i |
|- ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ <" ( M ` V ) "> ) ) |
| 172 |
169 171
|
eqtr4di |
|- ( ph -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) |
| 173 |
172
|
oveq1d |
|- ( ph -> ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 174 |
105 165 173
|
3eqtr4d |
|- ( ph -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 175 |
159 174
|
eqtr3d |
|- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 176 |
175
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 177 |
156
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) ) |
| 178 |
157
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> <" ( M ` U ) "> e. Word ( I X. 2o ) ) |
| 179 |
114
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 180 |
|
ccatcl |
|- ( ( <" ( M ` U ) "> e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) |
| 181 |
178 179 180
|
syl2anc |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) |
| 182 |
|
ccatcl |
|- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) ) -> ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) ) |
| 183 |
117 166 182
|
syl2anc |
|- ( ph -> ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) ) |
| 184 |
183
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) ) |
| 185 |
167
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> <" ( M ` V ) "> e. Word ( I X. 2o ) ) |
| 186 |
|
ccatcl |
|- ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) e. Word ( I X. 2o ) ) |
| 187 |
184 185 186
|
syl2anc |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) e. Word ( I X. 2o ) ) |
| 188 |
123
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) |
| 189 |
|
ccatlen |
|- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V "> ) ) ) |
| 190 |
117 166 189
|
syl2anc |
|- ( ph -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V "> ) ) ) |
| 191 |
|
s1len |
|- ( # ` <" V "> ) = 1 |
| 192 |
191
|
a1i |
|- ( ph -> ( # ` <" V "> ) = 1 ) |
| 193 |
128 192
|
oveq12d |
|- ( ph -> ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V "> ) ) = ( Q + 1 ) ) |
| 194 |
190 193
|
eqtrd |
|- ( ph -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) = ( Q + 1 ) ) |
| 195 |
126 194
|
eqeq12d |
|- ( ph -> ( ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) <-> P = ( Q + 1 ) ) ) |
| 196 |
195
|
biimpar |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) ) |
| 197 |
|
s1len |
|- ( # ` <" U "> ) = 1 |
| 198 |
|
s1len |
|- ( # ` <" ( M ` V ) "> ) = 1 |
| 199 |
197 198
|
eqtr4i |
|- ( # ` <" U "> ) = ( # ` <" ( M ` V ) "> ) |
| 200 |
199
|
a1i |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` <" U "> ) = ( # ` <" ( M ` V ) "> ) ) |
| 201 |
196 200
|
oveq12d |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U "> ) ) = ( ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) + ( # ` <" ( M ` V ) "> ) ) ) |
| 202 |
108
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) |
| 203 |
154
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> <" U "> e. Word ( I X. 2o ) ) |
| 204 |
|
ccatlen |
|- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U "> ) ) ) |
| 205 |
202 203 204
|
syl2anc |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U "> ) ) ) |
| 206 |
|
ccatlen |
|- ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) = ( ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) + ( # ` <" ( M ` V ) "> ) ) ) |
| 207 |
184 185 206
|
syl2anc |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) = ( ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) + ( # ` <" ( M ` V ) "> ) ) ) |
| 208 |
201 205 207
|
3eqtr4d |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) ) |
| 209 |
|
ccatopth |
|- ( ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) /\ ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) e. Word ( I X. 2o ) /\ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) /\ ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) |
| 210 |
177 181 187 188 208 209
|
syl221anc |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) |
| 211 |
176 210
|
mpbid |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 212 |
211
|
simpld |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) |
| 213 |
|
ccatopth |
|- ( ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) ) /\ ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) /\ ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) /\ <" U "> = <" ( M ` V ) "> ) ) ) |
| 214 |
202 203 184 185 196 213
|
syl221anc |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) /\ <" U "> = <" ( M ` V ) "> ) ) ) |
| 215 |
212 214
|
mpbid |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) /\ <" U "> = <" ( M ` V ) "> ) ) |
| 216 |
215
|
simpld |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) |
| 217 |
216
|
oveq1d |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 218 |
117
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) |
| 219 |
166
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> <" V "> e. Word ( I X. 2o ) ) |
| 220 |
|
ccatass |
|- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) |
| 221 |
218 219 179 220
|
syl3anc |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) |
| 222 |
215
|
simprd |
|- ( ( ph /\ P = ( Q + 1 ) ) -> <" U "> = <" ( M ` V ) "> ) |
| 223 |
|
s111 |
|- ( ( U e. ( I X. 2o ) /\ ( M ` V ) e. ( I X. 2o ) ) -> ( <" U "> = <" ( M ` V ) "> <-> U = ( M ` V ) ) ) |
| 224 |
16 100 223
|
syl2anc |
|- ( ph -> ( <" U "> = <" ( M ` V ) "> <-> U = ( M ` V ) ) ) |
| 225 |
224
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" U "> = <" ( M ` V ) "> <-> U = ( M ` V ) ) ) |
| 226 |
222 225
|
mpbid |
|- ( ( ph /\ P = ( Q + 1 ) ) -> U = ( M ` V ) ) |
| 227 |
226
|
fveq2d |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( M ` U ) = ( M ` ( M ` V ) ) ) |
| 228 |
3
|
efgmnvl |
|- ( V e. ( I X. 2o ) -> ( M ` ( M ` V ) ) = V ) |
| 229 |
17 228
|
syl |
|- ( ph -> ( M ` ( M ` V ) ) = V ) |
| 230 |
229
|
adantr |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( M ` ( M ` V ) ) = V ) |
| 231 |
227 230
|
eqtrd |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( M ` U ) = V ) |
| 232 |
231
|
s1eqd |
|- ( ( ph /\ P = ( Q + 1 ) ) -> <" ( M ` U ) "> = <" V "> ) |
| 233 |
232
|
oveq1d |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 234 |
211
|
simprd |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) |
| 235 |
233 234
|
eqtr3d |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) |
| 236 |
235
|
oveq2d |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 237 |
217 221 236
|
3eqtrd |
|- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 238 |
87 237
|
mtand |
|- ( ph -> -. P = ( Q + 1 ) ) |
| 239 |
238
|
pm2.21d |
|- ( ph -> ( P = ( Q + 1 ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 240 |
15
|
elfzelzd |
|- ( ph -> Q e. ZZ ) |
| 241 |
240
|
zcnd |
|- ( ph -> Q e. CC ) |
| 242 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 243 |
241 242 242
|
addassd |
|- ( ph -> ( ( Q + 1 ) + 1 ) = ( Q + ( 1 + 1 ) ) ) |
| 244 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 245 |
244
|
oveq2i |
|- ( Q + 2 ) = ( Q + ( 1 + 1 ) ) |
| 246 |
243 245
|
eqtr4di |
|- ( ph -> ( ( Q + 1 ) + 1 ) = ( Q + 2 ) ) |
| 247 |
246
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) = ( ZZ>= ` ( Q + 2 ) ) ) |
| 248 |
247
|
eleq2d |
|- ( ph -> ( P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) <-> P e. ( ZZ>= ` ( Q + 2 ) ) ) ) |
| 249 |
1 2 3 4 5 6
|
efgsfo |
|- S : dom S -onto-> W |
| 250 |
|
swrdcl |
|- ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 251 |
44 250
|
syl |
|- ( ph -> ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 252 |
|
ccatcl |
|- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) |
| 253 |
117 251 252
|
syl2anc |
|- ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) |
| 254 |
1
|
efgrcl |
|- ( ( A ` K ) e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 255 |
43 254
|
syl |
|- ( ph -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 256 |
255
|
simprd |
|- ( ph -> W = Word ( I X. 2o ) ) |
| 257 |
253 256
|
eleqtrrd |
|- ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. W ) |
| 258 |
|
foelrn |
|- ( ( S : dom S -onto-> W /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. W ) -> E. c e. dom S ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) |
| 259 |
249 257 258
|
sylancr |
|- ( ph -> E. c e. dom S ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) |
| 260 |
259
|
adantr |
|- ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) -> E. c e. dom S ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) |
| 261 |
7
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 262 |
8
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> A e. dom S ) |
| 263 |
9
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> B e. dom S ) |
| 264 |
10
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` A ) = ( S ` B ) ) |
| 265 |
11
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> -. ( A ` 0 ) = ( B ` 0 ) ) |
| 266 |
14
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
| 267 |
15
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
| 268 |
16
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> U e. ( I X. 2o ) ) |
| 269 |
17
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> V e. ( I X. 2o ) ) |
| 270 |
18
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
| 271 |
19
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
| 272 |
20
|
ad2antrr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> -. ( A ` K ) = ( B ` L ) ) |
| 273 |
|
simplr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> P e. ( ZZ>= ` ( Q + 2 ) ) ) |
| 274 |
|
simprl |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> c e. dom S ) |
| 275 |
|
simprr |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) |
| 276 |
275
|
eqcomd |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` c ) = ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) ) |
| 277 |
1 2 3 4 5 6 261 262 263 264 265 12 13 266 267 268 269 270 271 272 273 274 276
|
efgredlemd |
|- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| 278 |
260 277
|
rexlimddv |
|- ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| 279 |
278
|
ex |
|- ( ph -> ( P e. ( ZZ>= ` ( Q + 2 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 280 |
248 279
|
sylbid |
|- ( ph -> ( P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 281 |
239 280
|
jaod |
|- ( ph -> ( ( P = ( Q + 1 ) \/ P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 282 |
153 281
|
syl5 |
|- ( ph -> ( P e. ( ZZ>= ` ( Q + 1 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 283 |
152 282
|
jaod |
|- ( ph -> ( ( P = Q \/ P e. ( ZZ>= ` ( Q + 1 ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 284 |
21 283
|
syl5 |
|- ( ph -> ( P e. ( ZZ>= ` Q ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |