| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | efgredlem.1 |  |-  ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) | 
						
							| 8 |  | efgredlem.2 |  |-  ( ph -> A e. dom S ) | 
						
							| 9 |  | efgredlem.3 |  |-  ( ph -> B e. dom S ) | 
						
							| 10 |  | efgredlem.4 |  |-  ( ph -> ( S ` A ) = ( S ` B ) ) | 
						
							| 11 |  | efgredlem.5 |  |-  ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 12 |  | efgredlemb.k |  |-  K = ( ( ( # ` A ) - 1 ) - 1 ) | 
						
							| 13 |  | efgredlemb.l |  |-  L = ( ( ( # ` B ) - 1 ) - 1 ) | 
						
							| 14 |  | efgredlemb.p |  |-  ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) | 
						
							| 15 |  | efgredlemb.q |  |-  ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) | 
						
							| 16 |  | efgredlemb.u |  |-  ( ph -> U e. ( I X. 2o ) ) | 
						
							| 17 |  | efgredlemb.v |  |-  ( ph -> V e. ( I X. 2o ) ) | 
						
							| 18 |  | efgredlemb.6 |  |-  ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) | 
						
							| 19 |  | efgredlemb.7 |  |-  ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) | 
						
							| 20 |  | efgredlemb.8 |  |-  ( ph -> -. ( A ` K ) = ( B ` L ) ) | 
						
							| 21 |  | efgredlemd.9 |  |-  ( ph -> P e. ( ZZ>= ` ( Q + 2 ) ) ) | 
						
							| 22 |  | efgredlemd.c |  |-  ( ph -> C e. dom S ) | 
						
							| 23 |  | efgredlemd.sc |  |-  ( ph -> ( S ` C ) = ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) ) | 
						
							| 24 | 1 2 3 4 5 6 | efgsdm |  |-  ( C e. dom S <-> ( C e. ( Word W \ { (/) } ) /\ ( C ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` C ) ) ( C ` i ) e. ran ( T ` ( C ` ( i - 1 ) ) ) ) ) | 
						
							| 25 | 24 | simp1bi |  |-  ( C e. dom S -> C e. ( Word W \ { (/) } ) ) | 
						
							| 26 | 22 25 | syl |  |-  ( ph -> C e. ( Word W \ { (/) } ) ) | 
						
							| 27 | 26 | eldifad |  |-  ( ph -> C e. Word W ) | 
						
							| 28 | 1 2 3 4 5 6 | efgsdm |  |-  ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) | 
						
							| 29 | 28 | simp1bi |  |-  ( A e. dom S -> A e. ( Word W \ { (/) } ) ) | 
						
							| 30 | 8 29 | syl |  |-  ( ph -> A e. ( Word W \ { (/) } ) ) | 
						
							| 31 | 30 | eldifad |  |-  ( ph -> A e. Word W ) | 
						
							| 32 |  | wrdf |  |-  ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) | 
						
							| 33 | 31 32 | syl |  |-  ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) | 
						
							| 34 |  | fzossfz |  |-  ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ... ( ( # ` A ) - 1 ) ) | 
						
							| 35 |  | lencl |  |-  ( A e. Word W -> ( # ` A ) e. NN0 ) | 
						
							| 36 | 31 35 | syl |  |-  ( ph -> ( # ` A ) e. NN0 ) | 
						
							| 37 | 36 | nn0zd |  |-  ( ph -> ( # ` A ) e. ZZ ) | 
						
							| 38 |  | fzoval |  |-  ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) | 
						
							| 40 | 34 39 | sseqtrrid |  |-  ( ph -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) | 
						
							| 41 | 1 2 3 4 5 6 7 8 9 10 11 | efgredlema |  |-  ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) | 
						
							| 42 | 41 | simpld |  |-  ( ph -> ( ( # ` A ) - 1 ) e. NN ) | 
						
							| 43 |  | fzo0end |  |-  ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) | 
						
							| 45 | 12 44 | eqeltrid |  |-  ( ph -> K e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) | 
						
							| 46 | 40 45 | sseldd |  |-  ( ph -> K e. ( 0 ..^ ( # ` A ) ) ) | 
						
							| 47 | 33 46 | ffvelcdmd |  |-  ( ph -> ( A ` K ) e. W ) | 
						
							| 48 | 47 | s1cld |  |-  ( ph -> <" ( A ` K ) "> e. Word W ) | 
						
							| 49 |  | eldifsn |  |-  ( C e. ( Word W \ { (/) } ) <-> ( C e. Word W /\ C =/= (/) ) ) | 
						
							| 50 |  | lennncl |  |-  ( ( C e. Word W /\ C =/= (/) ) -> ( # ` C ) e. NN ) | 
						
							| 51 | 49 50 | sylbi |  |-  ( C e. ( Word W \ { (/) } ) -> ( # ` C ) e. NN ) | 
						
							| 52 | 26 51 | syl |  |-  ( ph -> ( # ` C ) e. NN ) | 
						
							| 53 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( # ` C ) ) <-> ( # ` C ) e. NN ) | 
						
							| 54 | 52 53 | sylibr |  |-  ( ph -> 0 e. ( 0 ..^ ( # ` C ) ) ) | 
						
							| 55 |  | ccatval1 |  |-  ( ( C e. Word W /\ <" ( A ` K ) "> e. Word W /\ 0 e. ( 0 ..^ ( # ` C ) ) ) -> ( ( C ++ <" ( A ` K ) "> ) ` 0 ) = ( C ` 0 ) ) | 
						
							| 56 | 27 48 54 55 | syl3anc |  |-  ( ph -> ( ( C ++ <" ( A ` K ) "> ) ` 0 ) = ( C ` 0 ) ) | 
						
							| 57 | 1 2 3 4 5 6 | efgsdm |  |-  ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) | 
						
							| 58 | 57 | simp1bi |  |-  ( B e. dom S -> B e. ( Word W \ { (/) } ) ) | 
						
							| 59 | 9 58 | syl |  |-  ( ph -> B e. ( Word W \ { (/) } ) ) | 
						
							| 60 | 59 | eldifad |  |-  ( ph -> B e. Word W ) | 
						
							| 61 |  | wrdf |  |-  ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) | 
						
							| 62 | 60 61 | syl |  |-  ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) | 
						
							| 63 |  | fzossfz |  |-  ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ... ( ( # ` B ) - 1 ) ) | 
						
							| 64 |  | lencl |  |-  ( B e. Word W -> ( # ` B ) e. NN0 ) | 
						
							| 65 | 60 64 | syl |  |-  ( ph -> ( # ` B ) e. NN0 ) | 
						
							| 66 | 65 | nn0zd |  |-  ( ph -> ( # ` B ) e. ZZ ) | 
						
							| 67 |  | fzoval |  |-  ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 68 | 66 67 | syl |  |-  ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 69 | 63 68 | sseqtrrid |  |-  ( ph -> ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ..^ ( # ` B ) ) ) | 
						
							| 70 | 41 | simprd |  |-  ( ph -> ( ( # ` B ) - 1 ) e. NN ) | 
						
							| 71 |  | fzo0end |  |-  ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 72 | 70 71 | syl |  |-  ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 73 | 13 72 | eqeltrid |  |-  ( ph -> L e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 74 | 69 73 | sseldd |  |-  ( ph -> L e. ( 0 ..^ ( # ` B ) ) ) | 
						
							| 75 | 62 74 | ffvelcdmd |  |-  ( ph -> ( B ` L ) e. W ) | 
						
							| 76 | 75 | s1cld |  |-  ( ph -> <" ( B ` L ) "> e. Word W ) | 
						
							| 77 |  | ccatval1 |  |-  ( ( C e. Word W /\ <" ( B ` L ) "> e. Word W /\ 0 e. ( 0 ..^ ( # ` C ) ) ) -> ( ( C ++ <" ( B ` L ) "> ) ` 0 ) = ( C ` 0 ) ) | 
						
							| 78 | 27 76 54 77 | syl3anc |  |-  ( ph -> ( ( C ++ <" ( B ` L ) "> ) ` 0 ) = ( C ` 0 ) ) | 
						
							| 79 | 56 78 | eqtr4d |  |-  ( ph -> ( ( C ++ <" ( A ` K ) "> ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) | 
						
							| 80 |  | fviss |  |-  ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) | 
						
							| 81 | 1 80 | eqsstri |  |-  W C_ Word ( I X. 2o ) | 
						
							| 82 | 81 47 | sselid |  |-  ( ph -> ( A ` K ) e. Word ( I X. 2o ) ) | 
						
							| 83 |  | lencl |  |-  ( ( A ` K ) e. Word ( I X. 2o ) -> ( # ` ( A ` K ) ) e. NN0 ) | 
						
							| 84 | 82 83 | syl |  |-  ( ph -> ( # ` ( A ` K ) ) e. NN0 ) | 
						
							| 85 | 84 | nn0red |  |-  ( ph -> ( # ` ( A ` K ) ) e. RR ) | 
						
							| 86 |  | 2rp |  |-  2 e. RR+ | 
						
							| 87 |  | ltaddrp |  |-  ( ( ( # ` ( A ` K ) ) e. RR /\ 2 e. RR+ ) -> ( # ` ( A ` K ) ) < ( ( # ` ( A ` K ) ) + 2 ) ) | 
						
							| 88 | 85 86 87 | sylancl |  |-  ( ph -> ( # ` ( A ` K ) ) < ( ( # ` ( A ` K ) ) + 2 ) ) | 
						
							| 89 | 36 | nn0red |  |-  ( ph -> ( # ` A ) e. RR ) | 
						
							| 90 | 89 | lem1d |  |-  ( ph -> ( ( # ` A ) - 1 ) <_ ( # ` A ) ) | 
						
							| 91 |  | fznn |  |-  ( ( # ` A ) e. ZZ -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) | 
						
							| 92 | 37 91 | syl |  |-  ( ph -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) | 
						
							| 93 | 42 90 92 | mpbir2and |  |-  ( ph -> ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) | 
						
							| 94 | 1 2 3 4 5 6 | efgsres |  |-  ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) | 
						
							| 95 | 8 93 94 | syl2anc |  |-  ( ph -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) | 
						
							| 96 | 1 2 3 4 5 6 | efgsval |  |-  ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) | 
						
							| 97 | 95 96 | syl |  |-  ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) | 
						
							| 98 |  | fz1ssfz0 |  |-  ( 1 ... ( # ` A ) ) C_ ( 0 ... ( # ` A ) ) | 
						
							| 99 | 98 93 | sselid |  |-  ( ph -> ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) | 
						
							| 100 |  | pfxres |  |-  ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) | 
						
							| 101 | 31 99 100 | syl2anc |  |-  ( ph -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) | 
						
							| 103 |  | pfxlen |  |-  ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 104 | 31 99 103 | syl2anc |  |-  ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 105 | 102 104 | eqtr3d |  |-  ( ph -> ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( # ` A ) - 1 ) ) | 
						
							| 106 | 105 | oveq1d |  |-  ( ph -> ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) = ( ( ( # ` A ) - 1 ) - 1 ) ) | 
						
							| 107 | 106 12 | eqtr4di |  |-  ( ph -> ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) = K ) | 
						
							| 108 | 107 | fveq2d |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` K ) ) | 
						
							| 109 | 45 | fvresd |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` K ) = ( A ` K ) ) | 
						
							| 110 | 97 108 109 | 3eqtrd |  |-  ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( A ` K ) ) | 
						
							| 111 | 110 | fveq2d |  |-  ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) = ( # ` ( A ` K ) ) ) | 
						
							| 112 | 1 2 3 4 5 6 | efgsdmi |  |-  ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. NN ) -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) | 
						
							| 113 | 8 42 112 | syl2anc |  |-  ( ph -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) | 
						
							| 114 | 12 | fveq2i |  |-  ( A ` K ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) | 
						
							| 115 | 114 | fveq2i |  |-  ( T ` ( A ` K ) ) = ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) | 
						
							| 116 | 115 | rneqi |  |-  ran ( T ` ( A ` K ) ) = ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) | 
						
							| 117 | 113 116 | eleqtrrdi |  |-  ( ph -> ( S ` A ) e. ran ( T ` ( A ` K ) ) ) | 
						
							| 118 | 1 2 3 4 | efgtlen |  |-  ( ( ( A ` K ) e. W /\ ( S ` A ) e. ran ( T ` ( A ` K ) ) ) -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` K ) ) + 2 ) ) | 
						
							| 119 | 47 117 118 | syl2anc |  |-  ( ph -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` K ) ) + 2 ) ) | 
						
							| 120 | 88 111 119 | 3brtr4d |  |-  ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) | 
						
							| 121 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | efgredleme |  |-  ( ph -> ( ( A ` K ) e. ran ( T ` ( S ` C ) ) /\ ( B ` L ) e. ran ( T ` ( S ` C ) ) ) ) | 
						
							| 122 | 121 | simpld |  |-  ( ph -> ( A ` K ) e. ran ( T ` ( S ` C ) ) ) | 
						
							| 123 | 1 2 3 4 5 6 | efgsp1 |  |-  ( ( C e. dom S /\ ( A ` K ) e. ran ( T ` ( S ` C ) ) ) -> ( C ++ <" ( A ` K ) "> ) e. dom S ) | 
						
							| 124 | 22 122 123 | syl2anc |  |-  ( ph -> ( C ++ <" ( A ` K ) "> ) e. dom S ) | 
						
							| 125 | 1 2 3 4 5 6 | efgsval2 |  |-  ( ( C e. Word W /\ ( A ` K ) e. W /\ ( C ++ <" ( A ` K ) "> ) e. dom S ) -> ( S ` ( C ++ <" ( A ` K ) "> ) ) = ( A ` K ) ) | 
						
							| 126 | 27 47 124 125 | syl3anc |  |-  ( ph -> ( S ` ( C ++ <" ( A ` K ) "> ) ) = ( A ` K ) ) | 
						
							| 127 | 110 126 | eqtr4d |  |-  ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) ) | 
						
							| 128 |  | 2fveq3 |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( # ` ( S ` a ) ) = ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) ) | 
						
							| 129 | 128 | breq1d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) ) | 
						
							| 130 |  | fveqeq2 |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( S ` a ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) ) ) | 
						
							| 131 |  | fveq1 |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( a ` 0 ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) ) | 
						
							| 132 | 131 | eqeq1d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 133 | 130 132 | imbi12d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) | 
						
							| 134 | 129 133 | imbi12d |  |-  ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) ) | 
						
							| 135 |  | fveq2 |  |-  ( b = ( C ++ <" ( A ` K ) "> ) -> ( S ` b ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) ) | 
						
							| 136 | 135 | eqeq2d |  |-  ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) ) ) | 
						
							| 137 |  | fveq1 |  |-  ( b = ( C ++ <" ( A ` K ) "> ) -> ( b ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) | 
						
							| 138 | 137 | eqeq2d |  |-  ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) | 
						
							| 139 | 136 138 | imbi12d |  |-  ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) | 
						
							| 140 | 139 | imbi2d |  |-  ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) ) | 
						
							| 141 | 134 140 | rspc2va |  |-  ( ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S /\ ( C ++ <" ( A ` K ) "> ) e. dom S ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) | 
						
							| 142 | 95 124 7 141 | syl21anc |  |-  ( ph -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) | 
						
							| 143 | 120 127 142 | mp2d |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) | 
						
							| 144 | 81 75 | sselid |  |-  ( ph -> ( B ` L ) e. Word ( I X. 2o ) ) | 
						
							| 145 |  | lencl |  |-  ( ( B ` L ) e. Word ( I X. 2o ) -> ( # ` ( B ` L ) ) e. NN0 ) | 
						
							| 146 | 144 145 | syl |  |-  ( ph -> ( # ` ( B ` L ) ) e. NN0 ) | 
						
							| 147 | 146 | nn0red |  |-  ( ph -> ( # ` ( B ` L ) ) e. RR ) | 
						
							| 148 |  | ltaddrp |  |-  ( ( ( # ` ( B ` L ) ) e. RR /\ 2 e. RR+ ) -> ( # ` ( B ` L ) ) < ( ( # ` ( B ` L ) ) + 2 ) ) | 
						
							| 149 | 147 86 148 | sylancl |  |-  ( ph -> ( # ` ( B ` L ) ) < ( ( # ` ( B ` L ) ) + 2 ) ) | 
						
							| 150 | 65 | nn0red |  |-  ( ph -> ( # ` B ) e. RR ) | 
						
							| 151 | 150 | lem1d |  |-  ( ph -> ( ( # ` B ) - 1 ) <_ ( # ` B ) ) | 
						
							| 152 |  | fznn |  |-  ( ( # ` B ) e. ZZ -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) | 
						
							| 153 | 66 152 | syl |  |-  ( ph -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) | 
						
							| 154 | 70 151 153 | mpbir2and |  |-  ( ph -> ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) | 
						
							| 155 | 1 2 3 4 5 6 | efgsres |  |-  ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) | 
						
							| 156 | 9 154 155 | syl2anc |  |-  ( ph -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) | 
						
							| 157 | 1 2 3 4 5 6 | efgsval |  |-  ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) | 
						
							| 158 | 156 157 | syl |  |-  ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) | 
						
							| 159 |  | fz1ssfz0 |  |-  ( 1 ... ( # ` B ) ) C_ ( 0 ... ( # ` B ) ) | 
						
							| 160 | 159 154 | sselid |  |-  ( ph -> ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) | 
						
							| 161 |  | pfxres |  |-  ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) | 
						
							| 162 | 60 160 161 | syl2anc |  |-  ( ph -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) | 
						
							| 163 | 162 | fveq2d |  |-  ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 164 |  | pfxlen |  |-  ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 165 | 60 160 164 | syl2anc |  |-  ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 166 | 163 165 | eqtr3d |  |-  ( ph -> ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 167 | 166 | oveq1d |  |-  ( ph -> ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) = ( ( ( # ` B ) - 1 ) - 1 ) ) | 
						
							| 168 | 167 13 | eqtr4di |  |-  ( ph -> ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) = L ) | 
						
							| 169 | 168 | fveq2d |  |-  ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` L ) ) | 
						
							| 170 | 73 | fvresd |  |-  ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` L ) = ( B ` L ) ) | 
						
							| 171 | 158 169 170 | 3eqtrd |  |-  ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( B ` L ) ) | 
						
							| 172 | 171 | fveq2d |  |-  ( ph -> ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) = ( # ` ( B ` L ) ) ) | 
						
							| 173 | 1 2 3 4 5 6 | efgsdmi |  |-  ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. NN ) -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 174 | 9 70 173 | syl2anc |  |-  ( ph -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 175 | 10 174 | eqeltrd |  |-  ( ph -> ( S ` A ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) | 
						
							| 176 | 13 | fveq2i |  |-  ( B ` L ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) | 
						
							| 177 | 176 | fveq2i |  |-  ( T ` ( B ` L ) ) = ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 178 | 177 | rneqi |  |-  ran ( T ` ( B ` L ) ) = ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) | 
						
							| 179 | 175 178 | eleqtrrdi |  |-  ( ph -> ( S ` A ) e. ran ( T ` ( B ` L ) ) ) | 
						
							| 180 | 1 2 3 4 | efgtlen |  |-  ( ( ( B ` L ) e. W /\ ( S ` A ) e. ran ( T ` ( B ` L ) ) ) -> ( # ` ( S ` A ) ) = ( ( # ` ( B ` L ) ) + 2 ) ) | 
						
							| 181 | 75 179 180 | syl2anc |  |-  ( ph -> ( # ` ( S ` A ) ) = ( ( # ` ( B ` L ) ) + 2 ) ) | 
						
							| 182 | 149 172 181 | 3brtr4d |  |-  ( ph -> ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) | 
						
							| 183 | 121 | simprd |  |-  ( ph -> ( B ` L ) e. ran ( T ` ( S ` C ) ) ) | 
						
							| 184 | 1 2 3 4 5 6 | efgsp1 |  |-  ( ( C e. dom S /\ ( B ` L ) e. ran ( T ` ( S ` C ) ) ) -> ( C ++ <" ( B ` L ) "> ) e. dom S ) | 
						
							| 185 | 22 183 184 | syl2anc |  |-  ( ph -> ( C ++ <" ( B ` L ) "> ) e. dom S ) | 
						
							| 186 | 1 2 3 4 5 6 | efgsval2 |  |-  ( ( C e. Word W /\ ( B ` L ) e. W /\ ( C ++ <" ( B ` L ) "> ) e. dom S ) -> ( S ` ( C ++ <" ( B ` L ) "> ) ) = ( B ` L ) ) | 
						
							| 187 | 27 75 185 186 | syl3anc |  |-  ( ph -> ( S ` ( C ++ <" ( B ` L ) "> ) ) = ( B ` L ) ) | 
						
							| 188 | 171 187 | eqtr4d |  |-  ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) ) | 
						
							| 189 |  | 2fveq3 |  |-  ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( # ` ( S ` a ) ) = ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) ) | 
						
							| 190 | 189 | breq1d |  |-  ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) ) | 
						
							| 191 |  | fveqeq2 |  |-  ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( S ` a ) = ( S ` b ) <-> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) ) ) | 
						
							| 192 |  | fveq1 |  |-  ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( a ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) | 
						
							| 193 | 192 | eqeq1d |  |-  ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 194 | 191 193 | imbi12d |  |-  ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) | 
						
							| 195 | 190 194 | imbi12d |  |-  ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) ) | 
						
							| 196 |  | fveq2 |  |-  ( b = ( C ++ <" ( B ` L ) "> ) -> ( S ` b ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) ) | 
						
							| 197 | 196 | eqeq2d |  |-  ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) <-> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) ) ) | 
						
							| 198 |  | fveq1 |  |-  ( b = ( C ++ <" ( B ` L ) "> ) -> ( b ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) | 
						
							| 199 | 198 | eqeq2d |  |-  ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) <-> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) | 
						
							| 200 | 197 199 | imbi12d |  |-  ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) | 
						
							| 201 | 200 | imbi2d |  |-  ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) ) | 
						
							| 202 | 195 201 | rspc2va |  |-  ( ( ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S /\ ( C ++ <" ( B ` L ) "> ) e. dom S ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) -> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) | 
						
							| 203 | 156 185 7 202 | syl21anc |  |-  ( ph -> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) | 
						
							| 204 | 182 188 203 | mp2d |  |-  ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) | 
						
							| 205 | 79 143 204 | 3eqtr4d |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) | 
						
							| 206 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) <-> ( ( # ` A ) - 1 ) e. NN ) | 
						
							| 207 | 42 206 | sylibr |  |-  ( ph -> 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) | 
						
							| 208 | 207 | fvresd |  |-  ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( A ` 0 ) ) | 
						
							| 209 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) <-> ( ( # ` B ) - 1 ) e. NN ) | 
						
							| 210 | 70 209 | sylibr |  |-  ( ph -> 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 211 | 210 | fvresd |  |-  ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( B ` 0 ) ) | 
						
							| 212 | 205 208 211 | 3eqtr3d |  |-  ( ph -> ( A ` 0 ) = ( B ` 0 ) ) |