| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inlinecirc02p.i |
|- I = { 1 , 2 } |
| 2 |
|
inlinecirc02p.e |
|- E = ( RR^ ` I ) |
| 3 |
|
inlinecirc02p.p |
|- P = ( RR ^m I ) |
| 4 |
|
inlinecirc02p.s |
|- S = ( Sphere ` E ) |
| 5 |
|
inlinecirc02p.0 |
|- .0. = ( I X. { 0 } ) |
| 6 |
|
inlinecirc02p.l |
|- L = ( LineM ` E ) |
| 7 |
|
inlinecirc02plem.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 8 |
|
inlinecirc02plem.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
| 9 |
|
inlinecirc02plem.a |
|- A = ( ( X ` 2 ) - ( Y ` 2 ) ) |
| 10 |
|
inlinecirc02plem.b |
|- B = ( ( Y ` 1 ) - ( X ` 1 ) ) |
| 11 |
|
inlinecirc02plem.c |
|- C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
| 12 |
|
simprr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> 0 < D ) |
| 13 |
12
|
gt0ne0d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> D =/= 0 ) |
| 14 |
1 3
|
rrx2pyel |
|- ( X e. P -> ( X ` 2 ) e. RR ) |
| 15 |
14
|
adantr |
|- ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. RR ) |
| 16 |
1 3
|
rrx2pyel |
|- ( Y e. P -> ( Y ` 2 ) e. RR ) |
| 17 |
16
|
adantl |
|- ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. RR ) |
| 18 |
15 17
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) - ( Y ` 2 ) ) e. RR ) |
| 19 |
9 18
|
eqeltrid |
|- ( ( X e. P /\ Y e. P ) -> A e. RR ) |
| 20 |
19
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> A e. RR ) |
| 21 |
20
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> A e. RR ) |
| 22 |
1 3
|
rrx2pxel |
|- ( Y e. P -> ( Y ` 1 ) e. RR ) |
| 23 |
22
|
adantl |
|- ( ( X e. P /\ Y e. P ) -> ( Y ` 1 ) e. RR ) |
| 24 |
1 3
|
rrx2pxel |
|- ( X e. P -> ( X ` 1 ) e. RR ) |
| 25 |
24
|
adantr |
|- ( ( X e. P /\ Y e. P ) -> ( X ` 1 ) e. RR ) |
| 26 |
23 25
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) e. RR ) |
| 27 |
10 26
|
eqeltrid |
|- ( ( X e. P /\ Y e. P ) -> B e. RR ) |
| 28 |
27
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> B e. RR ) |
| 29 |
28
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> B e. RR ) |
| 30 |
15 23
|
remulcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) x. ( Y ` 1 ) ) e. RR ) |
| 31 |
25 17
|
remulcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) e. RR ) |
| 32 |
30 31
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) e. RR ) |
| 33 |
11 32
|
eqeltrid |
|- ( ( X e. P /\ Y e. P ) -> C e. RR ) |
| 34 |
33
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. RR ) |
| 35 |
34
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> C e. RR ) |
| 36 |
19 27 33
|
3jca |
|- ( ( X e. P /\ Y e. P ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
| 37 |
36
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
| 38 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
| 39 |
38
|
adantr |
|- ( ( R e. RR+ /\ 0 < D ) -> R e. RR ) |
| 40 |
7 8
|
itsclc0lem3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR ) |
| 41 |
37 39 40
|
syl2an |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> D e. RR ) |
| 42 |
41 12
|
elrpd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> D e. RR+ ) |
| 43 |
42
|
rprege0d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( D e. RR /\ 0 <_ D ) ) |
| 44 |
7
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
| 45 |
19 27 44
|
syl2anc |
|- ( ( X e. P /\ Y e. P ) -> Q e. RR ) |
| 46 |
45
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q e. RR ) |
| 47 |
1 3 10 9
|
rrx2pnedifcoorneorr |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( B =/= 0 \/ A =/= 0 ) ) |
| 48 |
47
|
orcomd |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A =/= 0 \/ B =/= 0 ) ) |
| 49 |
7
|
resum2sqorgt0 |
|- ( ( A e. RR /\ B e. RR /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q ) |
| 50 |
20 28 48 49
|
syl3anc |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> 0 < Q ) |
| 51 |
50
|
gt0ne0d |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q =/= 0 ) |
| 52 |
46 51
|
jca |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Q e. RR /\ Q =/= 0 ) ) |
| 53 |
52
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( Q e. RR /\ Q =/= 0 ) ) |
| 54 |
|
itsclc0lem1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
| 55 |
21 29 35 43 53 54
|
syl311anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
| 56 |
|
itsclc0lem2 |
|- ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
| 57 |
29 21 35 43 53 56
|
syl311anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
| 58 |
55 57
|
jca |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) ) |
| 59 |
58
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) ) |
| 60 |
1 3
|
prelrrx2 |
|- ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P ) |
| 61 |
59 60
|
syl |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P ) |
| 62 |
|
itsclc0lem2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
| 63 |
21 29 35 43 53 62
|
syl311anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
| 64 |
|
itsclc0lem1 |
|- ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
| 65 |
29 21 35 43 53 64
|
syl311anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
| 66 |
63 65
|
jca |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) ) |
| 67 |
66
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) ) |
| 68 |
1 3
|
prelrrx2 |
|- ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) -> { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P ) |
| 69 |
67 68
|
syl |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P ) |
| 70 |
|
simpl |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( X e. P /\ Y e. P /\ X =/= Y ) ) |
| 71 |
|
simprl |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> R e. RR+ ) |
| 72 |
|
0red |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> 0 e. RR ) |
| 73 |
72 41 12
|
ltled |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> 0 <_ D ) |
| 74 |
70 71 73
|
jca32 |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) ) |
| 75 |
74
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) ) |
| 76 |
1 2 3 4 5 7 8 6 9 10 11
|
itsclinecirc0in |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) |
| 77 |
75 76
|
syl |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) |
| 78 |
|
opex |
|- <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V |
| 79 |
|
opex |
|- <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V |
| 80 |
|
opex |
|- <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V |
| 81 |
|
opex |
|- <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V |
| 82 |
80 81
|
pm3.2i |
|- ( <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V ) |
| 83 |
48
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( A =/= 0 \/ B =/= 0 ) ) |
| 84 |
83
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( A =/= 0 \/ B =/= 0 ) ) |
| 85 |
|
orcom |
|- ( ( A =/= 0 \/ B =/= 0 ) <-> ( B =/= 0 \/ A =/= 0 ) ) |
| 86 |
21
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> A e. CC ) |
| 87 |
86
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> A e. CC ) |
| 88 |
35
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> C e. CC ) |
| 89 |
88
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> C e. CC ) |
| 90 |
87 89
|
mulcld |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( A x. C ) e. CC ) |
| 91 |
29
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> B e. CC ) |
| 92 |
91
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> B e. CC ) |
| 93 |
41
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> D e. CC ) |
| 94 |
93
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> D e. CC ) |
| 95 |
94
|
sqrtcld |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( sqrt ` D ) e. CC ) |
| 96 |
92 95
|
mulcld |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( B x. ( sqrt ` D ) ) e. CC ) |
| 97 |
90 96
|
addcld |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) e. CC ) |
| 98 |
90 96
|
subcld |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) e. CC ) |
| 99 |
46
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> Q e. RR ) |
| 100 |
99
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> Q e. CC ) |
| 101 |
51
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> Q =/= 0 ) |
| 102 |
100 101
|
jca |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( Q e. CC /\ Q =/= 0 ) ) |
| 103 |
102
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( Q e. CC /\ Q =/= 0 ) ) |
| 104 |
|
div11 |
|- ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) e. CC /\ ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) e. CC /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) <-> ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) ) |
| 105 |
97 98 103 104
|
syl3anc |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) <-> ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) ) |
| 106 |
|
addsubeq0 |
|- ( ( ( A x. C ) e. CC /\ ( B x. ( sqrt ` D ) ) e. CC ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) <-> ( B x. ( sqrt ` D ) ) = 0 ) ) |
| 107 |
90 96 106
|
syl2anc |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) <-> ( B x. ( sqrt ` D ) ) = 0 ) ) |
| 108 |
41 73
|
resqrtcld |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( sqrt ` D ) e. RR ) |
| 109 |
108
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( sqrt ` D ) e. CC ) |
| 110 |
91 109
|
mul0ord |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. ( sqrt ` D ) ) = 0 <-> ( B = 0 \/ ( sqrt ` D ) = 0 ) ) ) |
| 111 |
110
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( B x. ( sqrt ` D ) ) = 0 <-> ( B = 0 \/ ( sqrt ` D ) = 0 ) ) ) |
| 112 |
|
eqneqall |
|- ( B = 0 -> ( B =/= 0 -> D = 0 ) ) |
| 113 |
112
|
com12 |
|- ( B =/= 0 -> ( B = 0 -> D = 0 ) ) |
| 114 |
113
|
adantl |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( B = 0 -> D = 0 ) ) |
| 115 |
|
sqrt00 |
|- ( ( D e. RR /\ 0 <_ D ) -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) |
| 116 |
41 73 115
|
syl2anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) |
| 117 |
116
|
biimpd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( sqrt ` D ) = 0 -> D = 0 ) ) |
| 118 |
117
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( sqrt ` D ) = 0 -> D = 0 ) ) |
| 119 |
114 118
|
jaod |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( B = 0 \/ ( sqrt ` D ) = 0 ) -> D = 0 ) ) |
| 120 |
111 119
|
sylbid |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( B x. ( sqrt ` D ) ) = 0 -> D = 0 ) ) |
| 121 |
107 120
|
sylbid |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) -> D = 0 ) ) |
| 122 |
105 121
|
sylbid |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) -> D = 0 ) ) |
| 123 |
122
|
necon3d |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( D =/= 0 -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 124 |
123
|
impancom |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( B =/= 0 -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 125 |
124
|
imp |
|- ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ B =/= 0 ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) |
| 126 |
125
|
olcd |
|- ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ B =/= 0 ) -> ( 1 =/= 1 \/ ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 127 |
|
1ex |
|- 1 e. _V |
| 128 |
|
ovex |
|- ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. _V |
| 129 |
127 128
|
opthne |
|- ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. <-> ( 1 =/= 1 \/ ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 130 |
126 129
|
sylibr |
|- ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ B =/= 0 ) -> <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. ) |
| 131 |
|
1ne2 |
|- 1 =/= 2 |
| 132 |
131
|
orci |
|- ( 1 =/= 2 \/ ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) |
| 133 |
127 128
|
opthne |
|- ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. <-> ( 1 =/= 2 \/ ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 134 |
132 133
|
mpbir |
|- <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. |
| 135 |
130 134
|
jctir |
|- ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ B =/= 0 ) -> ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) |
| 136 |
135
|
ex |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( B =/= 0 -> ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) ) |
| 137 |
27 33
|
remulcld |
|- ( ( X e. P /\ Y e. P ) -> ( B x. C ) e. RR ) |
| 138 |
137
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( B x. C ) e. RR ) |
| 139 |
138
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( B x. C ) e. RR ) |
| 140 |
21 108
|
remulcld |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( A x. ( sqrt ` D ) ) e. RR ) |
| 141 |
139 140
|
resubcld |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. RR ) |
| 142 |
141
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. CC ) |
| 143 |
142
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. CC ) |
| 144 |
29 35
|
remulcld |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( B x. C ) e. RR ) |
| 145 |
144 140
|
readdcld |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. RR ) |
| 146 |
145
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. RR ) |
| 147 |
146
|
recnd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. CC ) |
| 148 |
102
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( Q e. CC /\ Q =/= 0 ) ) |
| 149 |
|
div11 |
|- ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. CC /\ ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. CC /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) <-> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) |
| 150 |
143 147 148 149
|
syl3anc |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) <-> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) |
| 151 |
139
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( B x. C ) e. CC ) |
| 152 |
140
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( A x. ( sqrt ` D ) ) e. CC ) |
| 153 |
151 152
|
jca |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) ) |
| 154 |
153
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) ) |
| 155 |
|
eqcom |
|- ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) <-> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) |
| 156 |
|
addsubeq0 |
|- ( ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) <-> ( A x. ( sqrt ` D ) ) = 0 ) ) |
| 157 |
155 156
|
bitrid |
|- ( ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) <-> ( A x. ( sqrt ` D ) ) = 0 ) ) |
| 158 |
154 157
|
syl |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) <-> ( A x. ( sqrt ` D ) ) = 0 ) ) |
| 159 |
86 109
|
mul0ord |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( A x. ( sqrt ` D ) ) = 0 <-> ( A = 0 \/ ( sqrt ` D ) = 0 ) ) ) |
| 160 |
159
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( A x. ( sqrt ` D ) ) = 0 <-> ( A = 0 \/ ( sqrt ` D ) = 0 ) ) ) |
| 161 |
|
eqneqall |
|- ( A = 0 -> ( A =/= 0 -> D = 0 ) ) |
| 162 |
161
|
com12 |
|- ( A =/= 0 -> ( A = 0 -> D = 0 ) ) |
| 163 |
162
|
adantl |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( A = 0 -> D = 0 ) ) |
| 164 |
117
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( sqrt ` D ) = 0 -> D = 0 ) ) |
| 165 |
163 164
|
jaod |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( A = 0 \/ ( sqrt ` D ) = 0 ) -> D = 0 ) ) |
| 166 |
160 165
|
sylbid |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( A x. ( sqrt ` D ) ) = 0 -> D = 0 ) ) |
| 167 |
158 166
|
sylbid |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) -> D = 0 ) ) |
| 168 |
150 167
|
sylbid |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> D = 0 ) ) |
| 169 |
168
|
necon3d |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( D =/= 0 -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 170 |
169
|
impancom |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( A =/= 0 -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 171 |
170
|
imp |
|- ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ A =/= 0 ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) |
| 172 |
171
|
olcd |
|- ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ A =/= 0 ) -> ( 2 =/= 2 \/ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 173 |
|
2ex |
|- 2 e. _V |
| 174 |
|
ovex |
|- ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. _V |
| 175 |
173 174
|
opthne |
|- ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. <-> ( 2 =/= 2 \/ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 176 |
172 175
|
sylibr |
|- ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ A =/= 0 ) -> <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) |
| 177 |
131
|
necomi |
|- 2 =/= 1 |
| 178 |
177
|
orci |
|- ( 2 =/= 1 \/ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) |
| 179 |
173 174
|
opthne |
|- ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. <-> ( 2 =/= 1 \/ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 180 |
178 179
|
mpbir |
|- <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. |
| 181 |
176 180
|
jctil |
|- ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ A =/= 0 ) -> ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) |
| 182 |
181
|
ex |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( A =/= 0 -> ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) ) |
| 183 |
136 182
|
orim12d |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( B =/= 0 \/ A =/= 0 ) -> ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) ) ) |
| 184 |
85 183
|
biimtrid |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( A =/= 0 \/ B =/= 0 ) -> ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) ) ) |
| 185 |
84 184
|
mpd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) ) |
| 186 |
|
prneimg |
|- ( ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V ) /\ ( <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V ) ) -> ( ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) |
| 187 |
186
|
imp |
|- ( ( ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V ) /\ ( <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V ) ) /\ ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) |
| 188 |
78 79 82 185 187
|
mpsyl4anc |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) |
| 189 |
77 188
|
jca |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) |
| 190 |
61 69 189
|
3jca |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) ) |
| 191 |
13 190
|
mpdan |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) ) |
| 192 |
|
preq1 |
|- ( a = { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> { a , b } = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } ) |
| 193 |
192
|
eqeq2d |
|- ( a = { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } <-> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } ) ) |
| 194 |
|
neeq1 |
|- ( a = { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( a =/= b <-> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= b ) ) |
| 195 |
193 194
|
anbi12d |
|- ( a = { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } /\ a =/= b ) <-> ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= b ) ) ) |
| 196 |
|
preq2 |
|- ( b = { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) |
| 197 |
196
|
eqeq2d |
|- ( b = { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } <-> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) |
| 198 |
|
neeq2 |
|- ( b = { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= b <-> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) |
| 199 |
197 198
|
anbi12d |
|- ( b = { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= b ) <-> ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) ) |
| 200 |
195 199
|
rspc2ev |
|- ( ( { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) -> E. a e. P E. b e. P ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } /\ a =/= b ) ) |
| 201 |
191 200
|
syl |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> E. a e. P E. b e. P ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } /\ a =/= b ) ) |