| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetuni.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mdetuni.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | mdetuni.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | mdetuni.0g |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | mdetuni.1r |  |-  .1. = ( 1r ` R ) | 
						
							| 6 |  | mdetuni.pg |  |-  .+ = ( +g ` R ) | 
						
							| 7 |  | mdetuni.tg |  |-  .x. = ( .r ` R ) | 
						
							| 8 |  | mdetuni.n |  |-  ( ph -> N e. Fin ) | 
						
							| 9 |  | mdetuni.r |  |-  ( ph -> R e. Ring ) | 
						
							| 10 |  | mdetuni.ff |  |-  ( ph -> D : B --> K ) | 
						
							| 11 |  | mdetuni.al |  |-  ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) | 
						
							| 12 |  | mdetuni.li |  |-  ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) | 
						
							| 13 |  | mdetuni.sc |  |-  ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) | 
						
							| 14 |  | mdetunilem8.id |  |-  ( ph -> ( D ` ( 1r ` A ) ) = .0. ) | 
						
							| 15 |  | simpl |  |-  ( ( ph /\ E : N -1-1-> N ) -> ph ) | 
						
							| 16 |  | enrefg |  |-  ( N e. Fin -> N ~~ N ) | 
						
							| 17 | 8 16 | syl |  |-  ( ph -> N ~~ N ) | 
						
							| 18 |  | f1finf1o |  |-  ( ( N ~~ N /\ N e. Fin ) -> ( E : N -1-1-> N <-> E : N -1-1-onto-> N ) ) | 
						
							| 19 | 17 8 18 | syl2anc |  |-  ( ph -> ( E : N -1-1-> N <-> E : N -1-1-onto-> N ) ) | 
						
							| 20 | 19 | biimpa |  |-  ( ( ph /\ E : N -1-1-> N ) -> E : N -1-1-onto-> N ) | 
						
							| 21 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 22 | 8 9 21 | syl2anc |  |-  ( ph -> A e. Ring ) | 
						
							| 23 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 24 | 2 23 | ringidcl |  |-  ( A e. Ring -> ( 1r ` A ) e. B ) | 
						
							| 25 | 22 24 | syl |  |-  ( ph -> ( 1r ` A ) e. B ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( 1r ` A ) e. B ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | mdetunilem7 |  |-  ( ( ph /\ E : N -1-1-onto-> N /\ ( 1r ` A ) e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) ) | 
						
							| 28 | 15 20 26 27 | syl3anc |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) ) | 
						
							| 29 | 8 | adantr |  |-  ( ( ph /\ E : N -1-1-> N ) -> N e. Fin ) | 
						
							| 30 | 29 | 3ad2ant1 |  |-  ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> N e. Fin ) | 
						
							| 31 | 9 | adantr |  |-  ( ( ph /\ E : N -1-1-> N ) -> R e. Ring ) | 
						
							| 32 | 31 | 3ad2ant1 |  |-  ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> R e. Ring ) | 
						
							| 33 |  | simp1r |  |-  ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> E : N -1-1-> N ) | 
						
							| 34 |  | f1f |  |-  ( E : N -1-1-> N -> E : N --> N ) | 
						
							| 35 | 33 34 | syl |  |-  ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> E : N --> N ) | 
						
							| 36 |  | simp2 |  |-  ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> a e. N ) | 
						
							| 37 | 35 36 | ffvelcdmd |  |-  ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> ( E ` a ) e. N ) | 
						
							| 38 |  | simp3 |  |-  ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> b e. N ) | 
						
							| 39 | 1 5 4 30 32 37 38 23 | mat1ov |  |-  ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> ( ( E ` a ) ( 1r ` A ) b ) = if ( ( E ` a ) = b , .1. , .0. ) ) | 
						
							| 40 | 39 | mpoeq3dva |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) = ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) ) = ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) ) | 
						
							| 42 | 14 | adantr |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( 1r ` A ) ) = .0. ) | 
						
							| 43 | 42 | oveq2d |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. .0. ) ) | 
						
							| 44 |  | zrhpsgnmhm |  |-  ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) | 
						
							| 45 | 9 8 44 | syl2anc |  |-  ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) | 
						
							| 46 |  | eqid |  |-  ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) | 
						
							| 47 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 48 | 47 3 | mgpbas |  |-  K = ( Base ` ( mulGrp ` R ) ) | 
						
							| 49 | 46 48 | mhmf |  |-  ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) | 
						
							| 50 | 45 49 | syl |  |-  ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) | 
						
							| 52 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 53 | 52 46 | elsymgbas |  |-  ( N e. Fin -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) | 
						
							| 54 | 29 53 | syl |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) | 
						
							| 55 | 20 54 | mpbird |  |-  ( ( ph /\ E : N -1-1-> N ) -> E e. ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 56 | 51 55 | ffvelcdmd |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) e. K ) | 
						
							| 57 | 3 7 4 | ringrz |  |-  ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) e. K ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. .0. ) = .0. ) | 
						
							| 58 | 31 56 57 | syl2anc |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. .0. ) = .0. ) | 
						
							| 59 | 43 58 | eqtrd |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) = .0. ) | 
						
							| 60 | 28 41 59 | 3eqtr3d |  |-  ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) | 
						
							| 61 | 60 | ex |  |-  ( ph -> ( E : N -1-1-> N -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ E : N --> N ) -> ( E : N -1-1-> N -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) | 
						
							| 63 |  | dff13 |  |-  ( E : N -1-1-> N <-> ( E : N --> N /\ A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) | 
						
							| 64 |  | ibar |  |-  ( E : N --> N -> ( A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> ( E : N --> N /\ A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ph /\ E : N --> N ) -> ( A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> ( E : N --> N /\ A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) ) | 
						
							| 66 | 63 65 | bitr4id |  |-  ( ( ph /\ E : N --> N ) -> ( E : N -1-1-> N <-> A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) | 
						
							| 67 | 66 | notbid |  |-  ( ( ph /\ E : N --> N ) -> ( -. E : N -1-1-> N <-> -. A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) | 
						
							| 68 |  | rexnal |  |-  ( E. c e. N -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> -. A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) | 
						
							| 69 |  | rexnal |  |-  ( E. d e. N -. ( ( E ` c ) = ( E ` d ) -> c = d ) <-> -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) | 
						
							| 70 |  | df-ne |  |-  ( c =/= d <-> -. c = d ) | 
						
							| 71 | 70 | anbi2i |  |-  ( ( ( E ` c ) = ( E ` d ) /\ c =/= d ) <-> ( ( E ` c ) = ( E ` d ) /\ -. c = d ) ) | 
						
							| 72 |  | annim |  |-  ( ( ( E ` c ) = ( E ` d ) /\ -. c = d ) <-> -. ( ( E ` c ) = ( E ` d ) -> c = d ) ) | 
						
							| 73 | 71 72 | bitr2i |  |-  ( -. ( ( E ` c ) = ( E ` d ) -> c = d ) <-> ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) | 
						
							| 74 | 73 | rexbii |  |-  ( E. d e. N -. ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) | 
						
							| 75 | 69 74 | bitr3i |  |-  ( -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) | 
						
							| 76 | 75 | rexbii |  |-  ( E. c e. N -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) | 
						
							| 77 | 68 76 | bitr3i |  |-  ( -. A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) | 
						
							| 78 | 67 77 | bitrdi |  |-  ( ( ph /\ E : N --> N ) -> ( -. E : N -1-1-> N <-> E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) | 
						
							| 79 |  | simprrl |  |-  ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( E ` c ) = ( E ` d ) ) | 
						
							| 80 |  | fveqeq2 |  |-  ( a = c -> ( ( E ` a ) = b <-> ( E ` c ) = b ) ) | 
						
							| 81 | 80 | ifbid |  |-  ( a = c -> if ( ( E ` a ) = b , .1. , .0. ) = if ( ( E ` c ) = b , .1. , .0. ) ) | 
						
							| 82 |  | iftrue |  |-  ( a = c -> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) = if ( ( E ` c ) = b , .1. , .0. ) ) | 
						
							| 83 | 81 82 | eqtr4d |  |-  ( a = c -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) | 
						
							| 84 |  | fveqeq2 |  |-  ( a = d -> ( ( E ` a ) = b <-> ( E ` d ) = b ) ) | 
						
							| 85 | 84 | ifbid |  |-  ( a = d -> if ( ( E ` a ) = b , .1. , .0. ) = if ( ( E ` d ) = b , .1. , .0. ) ) | 
						
							| 86 |  | iftrue |  |-  ( a = d -> if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) = if ( ( E ` d ) = b , .1. , .0. ) ) | 
						
							| 87 | 85 86 | eqtr4d |  |-  ( a = d -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) | 
						
							| 88 |  | iffalse |  |-  ( -. a = d -> if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) = if ( ( E ` a ) = b , .1. , .0. ) ) | 
						
							| 89 | 88 | eqcomd |  |-  ( -. a = d -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) | 
						
							| 90 | 87 89 | pm2.61i |  |-  if ( ( E ` a ) = b , .1. , .0. ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) | 
						
							| 91 |  | iffalse |  |-  ( -. a = c -> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) | 
						
							| 92 | 90 91 | eqtr4id |  |-  ( -. a = c -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) | 
						
							| 93 | 83 92 | pm2.61i |  |-  if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) | 
						
							| 94 |  | eqeq1 |  |-  ( ( E ` d ) = ( E ` c ) -> ( ( E ` d ) = b <-> ( E ` c ) = b ) ) | 
						
							| 95 | 94 | eqcoms |  |-  ( ( E ` c ) = ( E ` d ) -> ( ( E ` d ) = b <-> ( E ` c ) = b ) ) | 
						
							| 96 | 95 | ifbid |  |-  ( ( E ` c ) = ( E ` d ) -> if ( ( E ` d ) = b , .1. , .0. ) = if ( ( E ` c ) = b , .1. , .0. ) ) | 
						
							| 97 | 96 | ifeq1d |  |-  ( ( E ` c ) = ( E ` d ) -> if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) = if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) | 
						
							| 98 | 97 | ifeq2d |  |-  ( ( E ` c ) = ( E ` d ) -> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) | 
						
							| 99 | 93 98 | eqtrid |  |-  ( ( E ` c ) = ( E ` d ) -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) | 
						
							| 100 | 99 | mpoeq3dv |  |-  ( ( E ` c ) = ( E ` d ) -> ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) = ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) | 
						
							| 101 | 100 | fveq2d |  |-  ( ( E ` c ) = ( E ` d ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) ) | 
						
							| 102 | 79 101 | syl |  |-  ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) ) | 
						
							| 103 |  | simpll |  |-  ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ph ) | 
						
							| 104 |  | simprll |  |-  ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> c e. N ) | 
						
							| 105 |  | simprlr |  |-  ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> d e. N ) | 
						
							| 106 |  | simprrr |  |-  ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> c =/= d ) | 
						
							| 107 | 104 105 106 | 3jca |  |-  ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( c e. N /\ d e. N /\ c =/= d ) ) | 
						
							| 108 | 3 5 | ringidcl |  |-  ( R e. Ring -> .1. e. K ) | 
						
							| 109 | 9 108 | syl |  |-  ( ph -> .1. e. K ) | 
						
							| 110 | 3 4 | ring0cl |  |-  ( R e. Ring -> .0. e. K ) | 
						
							| 111 | 9 110 | syl |  |-  ( ph -> .0. e. K ) | 
						
							| 112 | 109 111 | ifcld |  |-  ( ph -> if ( ( E ` c ) = b , .1. , .0. ) e. K ) | 
						
							| 113 | 112 | ad3antrrr |  |-  ( ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) /\ b e. N ) -> if ( ( E ` c ) = b , .1. , .0. ) e. K ) | 
						
							| 114 |  | simp1ll |  |-  ( ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) /\ a e. N /\ b e. N ) -> ph ) | 
						
							| 115 | 109 111 | ifcld |  |-  ( ph -> if ( ( E ` a ) = b , .1. , .0. ) e. K ) | 
						
							| 116 | 114 115 | syl |  |-  ( ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) /\ a e. N /\ b e. N ) -> if ( ( E ` a ) = b , .1. , .0. ) e. K ) | 
						
							| 117 | 1 2 3 4 5 6 7 8 9 10 11 12 13 103 107 113 116 | mdetunilem2 |  |-  ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( D ` ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) = .0. ) | 
						
							| 118 | 102 117 | eqtrd |  |-  ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) | 
						
							| 119 | 118 | expr |  |-  ( ( ( ph /\ E : N --> N ) /\ ( c e. N /\ d e. N ) ) -> ( ( ( E ` c ) = ( E ` d ) /\ c =/= d ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) | 
						
							| 120 | 119 | rexlimdvva |  |-  ( ( ph /\ E : N --> N ) -> ( E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) | 
						
							| 121 | 78 120 | sylbid |  |-  ( ( ph /\ E : N --> N ) -> ( -. E : N -1-1-> N -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) | 
						
							| 122 | 62 121 | pm2.61d |  |-  ( ( ph /\ E : N --> N ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) |