Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
|- A = ( N Mat R ) |
2 |
|
mdetuni.b |
|- B = ( Base ` A ) |
3 |
|
mdetuni.k |
|- K = ( Base ` R ) |
4 |
|
mdetuni.0g |
|- .0. = ( 0g ` R ) |
5 |
|
mdetuni.1r |
|- .1. = ( 1r ` R ) |
6 |
|
mdetuni.pg |
|- .+ = ( +g ` R ) |
7 |
|
mdetuni.tg |
|- .x. = ( .r ` R ) |
8 |
|
mdetuni.n |
|- ( ph -> N e. Fin ) |
9 |
|
mdetuni.r |
|- ( ph -> R e. Ring ) |
10 |
|
mdetuni.ff |
|- ( ph -> D : B --> K ) |
11 |
|
mdetuni.al |
|- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
12 |
|
mdetuni.li |
|- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
13 |
|
mdetuni.sc |
|- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
14 |
|
mdetunilem9.id |
|- ( ph -> ( D ` ( 1r ` A ) ) = .0. ) |
15 |
|
mdetunilem9.y |
|- Y = { x | A. y e. B A. z e. ( N ^m N ) ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) } |
16 |
|
ral0 |
|- A. w e. (/) ( a ` w ) = if ( w e. ( _I |` N ) , .1. , .0. ) |
17 |
|
simpr |
|- ( ( ph /\ a e. B ) -> a e. B ) |
18 |
|
f1oi |
|- ( _I |` N ) : N -1-1-onto-> N |
19 |
|
f1of |
|- ( ( _I |` N ) : N -1-1-onto-> N -> ( _I |` N ) : N --> N ) |
20 |
18 19
|
mp1i |
|- ( ph -> ( _I |` N ) : N --> N ) |
21 |
8 8
|
elmapd |
|- ( ph -> ( ( _I |` N ) e. ( N ^m N ) <-> ( _I |` N ) : N --> N ) ) |
22 |
20 21
|
mpbird |
|- ( ph -> ( _I |` N ) e. ( N ^m N ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ a e. B ) -> ( _I |` N ) e. ( N ^m N ) ) |
24 |
|
simplrl |
|- ( ( ( ph /\ ( y e. B /\ z e. ( N ^m N ) ) ) /\ A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) ) -> y e. B ) |
25 |
1 3 2
|
matbas2i |
|- ( y e. B -> y e. ( K ^m ( N X. N ) ) ) |
26 |
|
elmapi |
|- ( y e. ( K ^m ( N X. N ) ) -> y : ( N X. N ) --> K ) |
27 |
25 26
|
syl |
|- ( y e. B -> y : ( N X. N ) --> K ) |
28 |
27
|
feqmptd |
|- ( y e. B -> y = ( w e. ( N X. N ) |-> ( y ` w ) ) ) |
29 |
28
|
fveq2d |
|- ( y e. B -> ( D ` y ) = ( D ` ( w e. ( N X. N ) |-> ( y ` w ) ) ) ) |
30 |
24 29
|
syl |
|- ( ( ( ph /\ ( y e. B /\ z e. ( N ^m N ) ) ) /\ A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) ) -> ( D ` y ) = ( D ` ( w e. ( N X. N ) |-> ( y ` w ) ) ) ) |
31 |
|
eqid |
|- ( N X. N ) = ( N X. N ) |
32 |
|
mpteq12 |
|- ( ( ( N X. N ) = ( N X. N ) /\ A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) ) -> ( w e. ( N X. N ) |-> ( y ` w ) ) = ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) |
33 |
32
|
fveq2d |
|- ( ( ( N X. N ) = ( N X. N ) /\ A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) ) -> ( D ` ( w e. ( N X. N ) |-> ( y ` w ) ) ) = ( D ` ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) ) |
34 |
31 33
|
mpan |
|- ( A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` ( w e. ( N X. N ) |-> ( y ` w ) ) ) = ( D ` ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) ) |
35 |
34
|
adantl |
|- ( ( ( ph /\ ( y e. B /\ z e. ( N ^m N ) ) ) /\ A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) ) -> ( D ` ( w e. ( N X. N ) |-> ( y ` w ) ) ) = ( D ` ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) ) |
36 |
|
eleq1 |
|- ( a = z -> ( a e. ( N ^m N ) <-> z e. ( N ^m N ) ) ) |
37 |
36
|
anbi2d |
|- ( a = z -> ( ( ph /\ a e. ( N ^m N ) ) <-> ( ph /\ z e. ( N ^m N ) ) ) ) |
38 |
|
elequ2 |
|- ( a = z -> ( w e. a <-> w e. z ) ) |
39 |
38
|
ifbid |
|- ( a = z -> if ( w e. a , .1. , .0. ) = if ( w e. z , .1. , .0. ) ) |
40 |
39
|
mpteq2dv |
|- ( a = z -> ( w e. ( N X. N ) |-> if ( w e. a , .1. , .0. ) ) = ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) |
41 |
40
|
fveq2d |
|- ( a = z -> ( D ` ( w e. ( N X. N ) |-> if ( w e. a , .1. , .0. ) ) ) = ( D ` ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) ) |
42 |
41
|
eqeq1d |
|- ( a = z -> ( ( D ` ( w e. ( N X. N ) |-> if ( w e. a , .1. , .0. ) ) ) = .0. <-> ( D ` ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) = .0. ) ) |
43 |
37 42
|
imbi12d |
|- ( a = z -> ( ( ( ph /\ a e. ( N ^m N ) ) -> ( D ` ( w e. ( N X. N ) |-> if ( w e. a , .1. , .0. ) ) ) = .0. ) <-> ( ( ph /\ z e. ( N ^m N ) ) -> ( D ` ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) = .0. ) ) ) |
44 |
|
eleq1 |
|- ( w = <. b , c >. -> ( w e. a <-> <. b , c >. e. a ) ) |
45 |
44
|
ifbid |
|- ( w = <. b , c >. -> if ( w e. a , .1. , .0. ) = if ( <. b , c >. e. a , .1. , .0. ) ) |
46 |
45
|
mpompt |
|- ( w e. ( N X. N ) |-> if ( w e. a , .1. , .0. ) ) = ( b e. N , c e. N |-> if ( <. b , c >. e. a , .1. , .0. ) ) |
47 |
|
elmapi |
|- ( a e. ( N ^m N ) -> a : N --> N ) |
48 |
47
|
adantl |
|- ( ( ph /\ a e. ( N ^m N ) ) -> a : N --> N ) |
49 |
48
|
ffnd |
|- ( ( ph /\ a e. ( N ^m N ) ) -> a Fn N ) |
50 |
49
|
3ad2ant1 |
|- ( ( ( ph /\ a e. ( N ^m N ) ) /\ b e. N /\ c e. N ) -> a Fn N ) |
51 |
|
simp2 |
|- ( ( ( ph /\ a e. ( N ^m N ) ) /\ b e. N /\ c e. N ) -> b e. N ) |
52 |
|
fnopfvb |
|- ( ( a Fn N /\ b e. N ) -> ( ( a ` b ) = c <-> <. b , c >. e. a ) ) |
53 |
50 51 52
|
syl2anc |
|- ( ( ( ph /\ a e. ( N ^m N ) ) /\ b e. N /\ c e. N ) -> ( ( a ` b ) = c <-> <. b , c >. e. a ) ) |
54 |
53
|
bicomd |
|- ( ( ( ph /\ a e. ( N ^m N ) ) /\ b e. N /\ c e. N ) -> ( <. b , c >. e. a <-> ( a ` b ) = c ) ) |
55 |
54
|
ifbid |
|- ( ( ( ph /\ a e. ( N ^m N ) ) /\ b e. N /\ c e. N ) -> if ( <. b , c >. e. a , .1. , .0. ) = if ( ( a ` b ) = c , .1. , .0. ) ) |
56 |
55
|
mpoeq3dva |
|- ( ( ph /\ a e. ( N ^m N ) ) -> ( b e. N , c e. N |-> if ( <. b , c >. e. a , .1. , .0. ) ) = ( b e. N , c e. N |-> if ( ( a ` b ) = c , .1. , .0. ) ) ) |
57 |
46 56
|
eqtrid |
|- ( ( ph /\ a e. ( N ^m N ) ) -> ( w e. ( N X. N ) |-> if ( w e. a , .1. , .0. ) ) = ( b e. N , c e. N |-> if ( ( a ` b ) = c , .1. , .0. ) ) ) |
58 |
57
|
fveq2d |
|- ( ( ph /\ a e. ( N ^m N ) ) -> ( D ` ( w e. ( N X. N ) |-> if ( w e. a , .1. , .0. ) ) ) = ( D ` ( b e. N , c e. N |-> if ( ( a ` b ) = c , .1. , .0. ) ) ) ) |
59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
mdetunilem8 |
|- ( ( ph /\ a : N --> N ) -> ( D ` ( b e. N , c e. N |-> if ( ( a ` b ) = c , .1. , .0. ) ) ) = .0. ) |
60 |
47 59
|
sylan2 |
|- ( ( ph /\ a e. ( N ^m N ) ) -> ( D ` ( b e. N , c e. N |-> if ( ( a ` b ) = c , .1. , .0. ) ) ) = .0. ) |
61 |
58 60
|
eqtrd |
|- ( ( ph /\ a e. ( N ^m N ) ) -> ( D ` ( w e. ( N X. N ) |-> if ( w e. a , .1. , .0. ) ) ) = .0. ) |
62 |
43 61
|
chvarvv |
|- ( ( ph /\ z e. ( N ^m N ) ) -> ( D ` ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) = .0. ) |
63 |
62
|
adantrl |
|- ( ( ph /\ ( y e. B /\ z e. ( N ^m N ) ) ) -> ( D ` ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) = .0. ) |
64 |
63
|
adantr |
|- ( ( ( ph /\ ( y e. B /\ z e. ( N ^m N ) ) ) /\ A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) ) -> ( D ` ( w e. ( N X. N ) |-> if ( w e. z , .1. , .0. ) ) ) = .0. ) |
65 |
30 35 64
|
3eqtrd |
|- ( ( ( ph /\ ( y e. B /\ z e. ( N ^m N ) ) ) /\ A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) ) -> ( D ` y ) = .0. ) |
66 |
65
|
ex |
|- ( ( ph /\ ( y e. B /\ z e. ( N ^m N ) ) ) -> ( A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) |
67 |
66
|
ralrimivva |
|- ( ph -> A. y e. B A. z e. ( N ^m N ) ( A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) |
68 |
|
xpfi |
|- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
69 |
8 8 68
|
syl2anc |
|- ( ph -> ( N X. N ) e. Fin ) |
70 |
|
raleq |
|- ( x = ( N X. N ) -> ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) ) ) |
71 |
70
|
imbi1d |
|- ( x = ( N X. N ) -> ( ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> ( A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
72 |
71
|
2ralbidv |
|- ( x = ( N X. N ) -> ( A. y e. B A. z e. ( N ^m N ) ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
73 |
72 15
|
elab2g |
|- ( ( N X. N ) e. Fin -> ( ( N X. N ) e. Y <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
74 |
69 73
|
syl |
|- ( ph -> ( ( N X. N ) e. Y <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. ( N X. N ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
75 |
67 74
|
mpbird |
|- ( ph -> ( N X. N ) e. Y ) |
76 |
|
ssid |
|- ( N X. N ) C_ ( N X. N ) |
77 |
69
|
3ad2ant1 |
|- ( ( ph /\ ( N X. N ) C_ ( N X. N ) /\ -. (/) e. Y ) -> ( N X. N ) e. Fin ) |
78 |
|
sseq1 |
|- ( a = (/) -> ( a C_ ( N X. N ) <-> (/) C_ ( N X. N ) ) ) |
79 |
78
|
3anbi2d |
|- ( a = (/) -> ( ( ph /\ a C_ ( N X. N ) /\ -. (/) e. Y ) <-> ( ph /\ (/) C_ ( N X. N ) /\ -. (/) e. Y ) ) ) |
80 |
|
eleq1 |
|- ( a = (/) -> ( a e. Y <-> (/) e. Y ) ) |
81 |
80
|
notbid |
|- ( a = (/) -> ( -. a e. Y <-> -. (/) e. Y ) ) |
82 |
79 81
|
imbi12d |
|- ( a = (/) -> ( ( ( ph /\ a C_ ( N X. N ) /\ -. (/) e. Y ) -> -. a e. Y ) <-> ( ( ph /\ (/) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. (/) e. Y ) ) ) |
83 |
|
sseq1 |
|- ( a = b -> ( a C_ ( N X. N ) <-> b C_ ( N X. N ) ) ) |
84 |
83
|
3anbi2d |
|- ( a = b -> ( ( ph /\ a C_ ( N X. N ) /\ -. (/) e. Y ) <-> ( ph /\ b C_ ( N X. N ) /\ -. (/) e. Y ) ) ) |
85 |
|
eleq1 |
|- ( a = b -> ( a e. Y <-> b e. Y ) ) |
86 |
85
|
notbid |
|- ( a = b -> ( -. a e. Y <-> -. b e. Y ) ) |
87 |
84 86
|
imbi12d |
|- ( a = b -> ( ( ( ph /\ a C_ ( N X. N ) /\ -. (/) e. Y ) -> -. a e. Y ) <-> ( ( ph /\ b C_ ( N X. N ) /\ -. (/) e. Y ) -> -. b e. Y ) ) ) |
88 |
|
sseq1 |
|- ( a = ( b u. { c } ) -> ( a C_ ( N X. N ) <-> ( b u. { c } ) C_ ( N X. N ) ) ) |
89 |
88
|
3anbi2d |
|- ( a = ( b u. { c } ) -> ( ( ph /\ a C_ ( N X. N ) /\ -. (/) e. Y ) <-> ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ -. (/) e. Y ) ) ) |
90 |
|
eleq1 |
|- ( a = ( b u. { c } ) -> ( a e. Y <-> ( b u. { c } ) e. Y ) ) |
91 |
90
|
notbid |
|- ( a = ( b u. { c } ) -> ( -. a e. Y <-> -. ( b u. { c } ) e. Y ) ) |
92 |
89 91
|
imbi12d |
|- ( a = ( b u. { c } ) -> ( ( ( ph /\ a C_ ( N X. N ) /\ -. (/) e. Y ) -> -. a e. Y ) <-> ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. ( b u. { c } ) e. Y ) ) ) |
93 |
|
sseq1 |
|- ( a = ( N X. N ) -> ( a C_ ( N X. N ) <-> ( N X. N ) C_ ( N X. N ) ) ) |
94 |
93
|
3anbi2d |
|- ( a = ( N X. N ) -> ( ( ph /\ a C_ ( N X. N ) /\ -. (/) e. Y ) <-> ( ph /\ ( N X. N ) C_ ( N X. N ) /\ -. (/) e. Y ) ) ) |
95 |
|
eleq1 |
|- ( a = ( N X. N ) -> ( a e. Y <-> ( N X. N ) e. Y ) ) |
96 |
95
|
notbid |
|- ( a = ( N X. N ) -> ( -. a e. Y <-> -. ( N X. N ) e. Y ) ) |
97 |
94 96
|
imbi12d |
|- ( a = ( N X. N ) -> ( ( ( ph /\ a C_ ( N X. N ) /\ -. (/) e. Y ) -> -. a e. Y ) <-> ( ( ph /\ ( N X. N ) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. ( N X. N ) e. Y ) ) ) |
98 |
|
simp3 |
|- ( ( ph /\ (/) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. (/) e. Y ) |
99 |
|
ssun1 |
|- b C_ ( b u. { c } ) |
100 |
|
sstr2 |
|- ( b C_ ( b u. { c } ) -> ( ( b u. { c } ) C_ ( N X. N ) -> b C_ ( N X. N ) ) ) |
101 |
99 100
|
ax-mp |
|- ( ( b u. { c } ) C_ ( N X. N ) -> b C_ ( N X. N ) ) |
102 |
101
|
3anim2i |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ -. (/) e. Y ) -> ( ph /\ b C_ ( N X. N ) /\ -. (/) e. Y ) ) |
103 |
102
|
imim1i |
|- ( ( ( ph /\ b C_ ( N X. N ) /\ -. (/) e. Y ) -> -. b e. Y ) -> ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. b e. Y ) ) |
104 |
|
simpl1 |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ph ) |
105 |
|
simpl2 |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( b u. { c } ) C_ ( N X. N ) ) |
106 |
|
simprll |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> a e. B ) |
107 |
1 3 2
|
matbas2i |
|- ( a e. B -> a e. ( K ^m ( N X. N ) ) ) |
108 |
|
elmapi |
|- ( a e. ( K ^m ( N X. N ) ) -> a : ( N X. N ) --> K ) |
109 |
107 108
|
syl |
|- ( a e. B -> a : ( N X. N ) --> K ) |
110 |
109
|
3ad2ant3 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> a : ( N X. N ) --> K ) |
111 |
110
|
feqmptd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> a = ( e e. ( N X. N ) |-> ( a ` e ) ) ) |
112 |
111
|
reseq1d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( a |` ( { ( 1st ` c ) } X. N ) ) = ( ( e e. ( N X. N ) |-> ( a ` e ) ) |` ( { ( 1st ` c ) } X. N ) ) ) |
113 |
9
|
3ad2ant1 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> R e. Ring ) |
114 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
115 |
113 114
|
syl |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> R e. Grp ) |
116 |
115
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> R e. Grp ) |
117 |
110
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> a : ( N X. N ) --> K ) |
118 |
|
simp2 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( b u. { c } ) C_ ( N X. N ) ) |
119 |
118
|
unssbd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> { c } C_ ( N X. N ) ) |
120 |
|
vex |
|- c e. _V |
121 |
120
|
snss |
|- ( c e. ( N X. N ) <-> { c } C_ ( N X. N ) ) |
122 |
119 121
|
sylibr |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> c e. ( N X. N ) ) |
123 |
|
xp1st |
|- ( c e. ( N X. N ) -> ( 1st ` c ) e. N ) |
124 |
122 123
|
syl |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( 1st ` c ) e. N ) |
125 |
124
|
snssd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> { ( 1st ` c ) } C_ N ) |
126 |
|
xpss1 |
|- ( { ( 1st ` c ) } C_ N -> ( { ( 1st ` c ) } X. N ) C_ ( N X. N ) ) |
127 |
125 126
|
syl |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( { ( 1st ` c ) } X. N ) C_ ( N X. N ) ) |
128 |
127
|
sselda |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> e e. ( N X. N ) ) |
129 |
117 128
|
ffvelrnd |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( a ` e ) e. K ) |
130 |
3 5
|
ringidcl |
|- ( R e. Ring -> .1. e. K ) |
131 |
113 130
|
syl |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> .1. e. K ) |
132 |
3 4
|
ring0cl |
|- ( R e. Ring -> .0. e. K ) |
133 |
113 132
|
syl |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> .0. e. K ) |
134 |
131 133
|
ifcld |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> if ( e e. d , .1. , .0. ) e. K ) |
135 |
134
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> if ( e e. d , .1. , .0. ) e. K ) |
136 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
137 |
3 6 136
|
grpnpcan |
|- ( ( R e. Grp /\ ( a ` e ) e. K /\ if ( e e. d , .1. , .0. ) e. K ) -> ( ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) .+ if ( e e. d , .1. , .0. ) ) = ( a ` e ) ) |
138 |
116 129 135 137
|
syl3anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) .+ if ( e e. d , .1. , .0. ) ) = ( a ` e ) ) |
139 |
138
|
eqcomd |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( a ` e ) = ( ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) .+ if ( e e. d , .1. , .0. ) ) ) |
140 |
139
|
adantr |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ e = c ) -> ( a ` e ) = ( ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) .+ if ( e e. d , .1. , .0. ) ) ) |
141 |
|
iftrue |
|- ( e = c -> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) = ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) ) |
142 |
|
iftrue |
|- ( e = c -> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) = if ( e e. d , .1. , .0. ) ) |
143 |
141 142
|
oveq12d |
|- ( e = c -> ( if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) .+ if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) = ( ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) .+ if ( e e. d , .1. , .0. ) ) ) |
144 |
143
|
adantl |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ e = c ) -> ( if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) .+ if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) = ( ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) .+ if ( e e. d , .1. , .0. ) ) ) |
145 |
140 144
|
eqtr4d |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ e = c ) -> ( a ` e ) = ( if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) .+ if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) |
146 |
3 6 4
|
grplid |
|- ( ( R e. Grp /\ ( a ` e ) e. K ) -> ( .0. .+ ( a ` e ) ) = ( a ` e ) ) |
147 |
116 129 146
|
syl2anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( .0. .+ ( a ` e ) ) = ( a ` e ) ) |
148 |
147
|
eqcomd |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( a ` e ) = ( .0. .+ ( a ` e ) ) ) |
149 |
148
|
adantr |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ -. e = c ) -> ( a ` e ) = ( .0. .+ ( a ` e ) ) ) |
150 |
|
iffalse |
|- ( -. e = c -> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) = .0. ) |
151 |
|
iffalse |
|- ( -. e = c -> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) = ( a ` e ) ) |
152 |
150 151
|
oveq12d |
|- ( -. e = c -> ( if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) .+ if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) = ( .0. .+ ( a ` e ) ) ) |
153 |
152
|
adantl |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ -. e = c ) -> ( if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) .+ if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) = ( .0. .+ ( a ` e ) ) ) |
154 |
149 153
|
eqtr4d |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ -. e = c ) -> ( a ` e ) = ( if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) .+ if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) |
155 |
145 154
|
pm2.61dan |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( a ` e ) = ( if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) .+ if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) |
156 |
155
|
mpteq2dva |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( { ( 1st ` c ) } X. N ) |-> ( a ` e ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> ( if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) .+ if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) |
157 |
|
snfi |
|- { ( 1st ` c ) } e. Fin |
158 |
8
|
3ad2ant1 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> N e. Fin ) |
159 |
|
xpfi |
|- ( ( { ( 1st ` c ) } e. Fin /\ N e. Fin ) -> ( { ( 1st ` c ) } X. N ) e. Fin ) |
160 |
157 158 159
|
sylancr |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( { ( 1st ` c ) } X. N ) e. Fin ) |
161 |
|
ovex |
|- ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) e. _V |
162 |
4
|
fvexi |
|- .0. e. _V |
163 |
161 162
|
ifex |
|- if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) e. _V |
164 |
163
|
a1i |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) e. _V ) |
165 |
5
|
fvexi |
|- .1. e. _V |
166 |
165 162
|
ifex |
|- if ( e e. d , .1. , .0. ) e. _V |
167 |
|
fvex |
|- ( a ` e ) e. _V |
168 |
166 167
|
ifex |
|- if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) e. _V |
169 |
168
|
a1i |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) e. _V ) |
170 |
|
xp1st |
|- ( e e. ( { ( 1st ` c ) } X. N ) -> ( 1st ` e ) e. { ( 1st ` c ) } ) |
171 |
|
elsni |
|- ( ( 1st ` e ) e. { ( 1st ` c ) } -> ( 1st ` e ) = ( 1st ` c ) ) |
172 |
|
iftrue |
|- ( ( 1st ` e ) = ( 1st ` c ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) = if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) ) |
173 |
170 171 172
|
3syl |
|- ( e e. ( { ( 1st ` c ) } X. N ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) = if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) ) |
174 |
173
|
mpteq2ia |
|- ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) ) |
175 |
174
|
a1i |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) ) ) |
176 |
|
eqidd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) |
177 |
160 164 169 175 176
|
offval2 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) oF .+ ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> ( if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) .+ if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) |
178 |
156 177
|
eqtr4d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( { ( 1st ` c ) } X. N ) |-> ( a ` e ) ) = ( ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) oF .+ ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) |
179 |
127
|
resmptd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> ( a ` e ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> ( a ` e ) ) ) |
180 |
127
|
resmptd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) |
181 |
127
|
resmptd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) |
182 |
180 181
|
oveq12d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) = ( ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) oF .+ ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) |
183 |
178 179 182
|
3eqtr4d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> ( a ` e ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) ) |
184 |
112 183
|
eqtrd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( a |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) ) |
185 |
111
|
reseq1d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> ( a ` e ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
186 |
|
xp1st |
|- ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) -> ( 1st ` e ) e. ( N \ { ( 1st ` c ) } ) ) |
187 |
|
eldifsni |
|- ( ( 1st ` e ) e. ( N \ { ( 1st ` c ) } ) -> ( 1st ` e ) =/= ( 1st ` c ) ) |
188 |
186 187
|
syl |
|- ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) -> ( 1st ` e ) =/= ( 1st ` c ) ) |
189 |
188
|
neneqd |
|- ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) -> -. ( 1st ` e ) = ( 1st ` c ) ) |
190 |
189
|
adantl |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( ( N \ { ( 1st ` c ) } ) X. N ) ) -> -. ( 1st ` e ) = ( 1st ` c ) ) |
191 |
190
|
iffalsed |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( ( N \ { ( 1st ` c ) } ) X. N ) ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) = ( a ` e ) ) |
192 |
191
|
mpteq2dva |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> ( a ` e ) ) ) |
193 |
|
difss |
|- ( N \ { ( 1st ` c ) } ) C_ N |
194 |
|
xpss1 |
|- ( ( N \ { ( 1st ` c ) } ) C_ N -> ( ( N \ { ( 1st ` c ) } ) X. N ) C_ ( N X. N ) ) |
195 |
193 194
|
ax-mp |
|- ( ( N \ { ( 1st ` c ) } ) X. N ) C_ ( N X. N ) |
196 |
|
resmpt |
|- ( ( ( N \ { ( 1st ` c ) } ) X. N ) C_ ( N X. N ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) |
197 |
195 196
|
mp1i |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) |
198 |
|
resmpt |
|- ( ( ( N \ { ( 1st ` c ) } ) X. N ) C_ ( N X. N ) -> ( ( e e. ( N X. N ) |-> ( a ` e ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> ( a ` e ) ) ) |
199 |
195 198
|
mp1i |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> ( a ` e ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> ( a ` e ) ) ) |
200 |
192 197 199
|
3eqtr4rd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> ( a ` e ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
201 |
185 200
|
eqtrd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
202 |
|
fveq2 |
|- ( e = c -> ( 1st ` e ) = ( 1st ` c ) ) |
203 |
190 202
|
nsyl |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( ( N \ { ( 1st ` c ) } ) X. N ) ) -> -. e = c ) |
204 |
203
|
iffalsed |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( ( N \ { ( 1st ` c ) } ) X. N ) ) -> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) = ( a ` e ) ) |
205 |
204
|
mpteq2dva |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> ( a ` e ) ) ) |
206 |
|
resmpt |
|- ( ( ( N \ { ( 1st ` c ) } ) X. N ) C_ ( N X. N ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) |
207 |
195 206
|
mp1i |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) |
208 |
205 207 199
|
3eqtr4rd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> ( a ` e ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
209 |
185 208
|
eqtrd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
210 |
134
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> if ( e e. d , .1. , .0. ) e. K ) |
211 |
110
|
ffvelrnda |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> ( a ` e ) e. K ) |
212 |
210 211
|
ifcld |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) e. K ) |
213 |
212
|
fmpttd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) : ( N X. N ) --> K ) |
214 |
3
|
fvexi |
|- K e. _V |
215 |
68
|
anidms |
|- ( N e. Fin -> ( N X. N ) e. Fin ) |
216 |
158 215
|
syl |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( N X. N ) e. Fin ) |
217 |
|
elmapg |
|- ( ( K e. _V /\ ( N X. N ) e. Fin ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) e. ( K ^m ( N X. N ) ) <-> ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) : ( N X. N ) --> K ) ) |
218 |
214 216 217
|
sylancr |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) e. ( K ^m ( N X. N ) ) <-> ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) : ( N X. N ) --> K ) ) |
219 |
213 218
|
mpbird |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) e. ( K ^m ( N X. N ) ) ) |
220 |
1 3
|
matbas2 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( K ^m ( N X. N ) ) = ( Base ` A ) ) |
221 |
158 113 220
|
syl2anc |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( K ^m ( N X. N ) ) = ( Base ` A ) ) |
222 |
221 2
|
eqtr4di |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( K ^m ( N X. N ) ) = B ) |
223 |
219 222
|
eleqtrd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) e. B ) |
224 |
|
simp3 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> a e. B ) |
225 |
115
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> R e. Grp ) |
226 |
3 136
|
grpsubcl |
|- ( ( R e. Grp /\ ( a ` e ) e. K /\ if ( e e. d , .1. , .0. ) e. K ) -> ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) e. K ) |
227 |
225 211 210 226
|
syl3anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) e. K ) |
228 |
133
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> .0. e. K ) |
229 |
227 228
|
ifcld |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) e. K ) |
230 |
229 211
|
ifcld |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) e. K ) |
231 |
230
|
fmpttd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) : ( N X. N ) --> K ) |
232 |
|
elmapg |
|- ( ( K e. _V /\ ( N X. N ) e. Fin ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) e. ( K ^m ( N X. N ) ) <-> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) : ( N X. N ) --> K ) ) |
233 |
214 216 232
|
sylancr |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) e. ( K ^m ( N X. N ) ) <-> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) : ( N X. N ) --> K ) ) |
234 |
231 233
|
mpbird |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) e. ( K ^m ( N X. N ) ) ) |
235 |
234 222
|
eleqtrd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) e. B ) |
236 |
12
|
3ad2ant1 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
237 |
|
reseq1 |
|- ( x = a -> ( x |` ( { w } X. N ) ) = ( a |` ( { w } X. N ) ) ) |
238 |
237
|
eqeq1d |
|- ( x = a -> ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) <-> ( a |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) ) ) |
239 |
|
reseq1 |
|- ( x = a -> ( x |` ( ( N \ { w } ) X. N ) ) = ( a |` ( ( N \ { w } ) X. N ) ) ) |
240 |
239
|
eqeq1d |
|- ( x = a -> ( ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) <-> ( a |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) ) ) |
241 |
239
|
eqeq1d |
|- ( x = a -> ( ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) |
242 |
238 240 241
|
3anbi123d |
|- ( x = a -> ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( a |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) |
243 |
|
fveqeq2 |
|- ( x = a -> ( ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) <-> ( D ` a ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
244 |
242 243
|
imbi12d |
|- ( x = a -> ( ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) <-> ( ( ( a |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) ) |
245 |
244
|
2ralbidv |
|- ( x = a -> ( A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( a |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) ) |
246 |
|
reseq1 |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( y |` ( { w } X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) |
247 |
246
|
oveq1d |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) ) |
248 |
247
|
eqeq2d |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( a |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) <-> ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) ) ) |
249 |
|
reseq1 |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( y |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) |
250 |
249
|
eqeq2d |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( a |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) <-> ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) ) |
251 |
248 250
|
3anbi12d |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( ( a |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) |
252 |
|
fveq2 |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( D ` y ) = ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) ) |
253 |
252
|
oveq1d |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( D ` y ) .+ ( D ` z ) ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) ) |
254 |
253
|
eqeq2d |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( D ` a ) = ( ( D ` y ) .+ ( D ` z ) ) <-> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) ) ) |
255 |
251 254
|
imbi12d |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( ( ( a |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` y ) .+ ( D ` z ) ) ) <-> ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) ) ) ) |
256 |
255
|
2ralbidv |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( A. z e. B A. w e. N ( ( ( a |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` y ) .+ ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) ) ) ) |
257 |
245 256
|
rspc2va |
|- ( ( ( a e. B /\ ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) e. B ) /\ A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) -> A. z e. B A. w e. N ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) ) ) |
258 |
224 235 236 257
|
syl21anc |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> A. z e. B A. w e. N ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) ) ) |
259 |
|
reseq1 |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( z |` ( { w } X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) |
260 |
259
|
oveq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) ) |
261 |
260
|
eqeq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) <-> ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) ) ) |
262 |
|
reseq1 |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( z |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) |
263 |
262
|
eqeq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) ) |
264 |
261 263
|
3anbi13d |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) ) ) |
265 |
|
fveq2 |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( D ` z ) = ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) |
266 |
265
|
oveq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) |
267 |
266
|
eqeq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) <-> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) |
268 |
264 267
|
imbi12d |
|- ( z = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) ) <-> ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) ) |
269 |
|
sneq |
|- ( w = ( 1st ` c ) -> { w } = { ( 1st ` c ) } ) |
270 |
269
|
xpeq1d |
|- ( w = ( 1st ` c ) -> ( { w } X. N ) = ( { ( 1st ` c ) } X. N ) ) |
271 |
270
|
reseq2d |
|- ( w = ( 1st ` c ) -> ( a |` ( { w } X. N ) ) = ( a |` ( { ( 1st ` c ) } X. N ) ) ) |
272 |
270
|
reseq2d |
|- ( w = ( 1st ` c ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) |
273 |
270
|
reseq2d |
|- ( w = ( 1st ` c ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) |
274 |
272 273
|
oveq12d |
|- ( w = ( 1st ` c ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) ) |
275 |
271 274
|
eqeq12d |
|- ( w = ( 1st ` c ) -> ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) <-> ( a |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) ) ) |
276 |
269
|
difeq2d |
|- ( w = ( 1st ` c ) -> ( N \ { w } ) = ( N \ { ( 1st ` c ) } ) ) |
277 |
276
|
xpeq1d |
|- ( w = ( 1st ` c ) -> ( ( N \ { w } ) X. N ) = ( ( N \ { ( 1st ` c ) } ) X. N ) ) |
278 |
277
|
reseq2d |
|- ( w = ( 1st ` c ) -> ( a |` ( ( N \ { w } ) X. N ) ) = ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
279 |
277
|
reseq2d |
|- ( w = ( 1st ` c ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
280 |
278 279
|
eqeq12d |
|- ( w = ( 1st ` c ) -> ( ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) <-> ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) ) |
281 |
277
|
reseq2d |
|- ( w = ( 1st ` c ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
282 |
278 281
|
eqeq12d |
|- ( w = ( 1st ` c ) -> ( ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) <-> ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) ) |
283 |
275 280 282
|
3anbi123d |
|- ( w = ( 1st ` c ) -> ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( a |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) /\ ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) /\ ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) ) ) |
284 |
283
|
imbi1d |
|- ( w = ( 1st ` c ) -> ( ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) <-> ( ( ( a |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) /\ ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) /\ ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) ) |
285 |
268 284
|
rspc2va |
|- ( ( ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) e. B /\ ( 1st ` c ) e. N ) /\ A. z e. B A. w e. N ( ( ( a |` ( { w } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) /\ ( a |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` z ) ) ) ) -> ( ( ( a |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) /\ ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) /\ ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) |
286 |
223 124 258 285
|
syl21anc |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( ( a |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) oF .+ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) /\ ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) /\ ( a |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) |
287 |
184 201 209 286
|
mp3and |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) |
288 |
104 105 106 287
|
syl3anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( D ` a ) = ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) |
289 |
|
fveq2 |
|- ( e = c -> ( a ` e ) = ( a ` c ) ) |
290 |
|
elequ1 |
|- ( e = c -> ( e e. d <-> c e. d ) ) |
291 |
290
|
ifbid |
|- ( e = c -> if ( e e. d , .1. , .0. ) = if ( c e. d , .1. , .0. ) ) |
292 |
289 291
|
oveq12d |
|- ( e = c -> ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) ) |
293 |
292
|
adantl |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ e = c ) -> ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) ) |
294 |
110 122
|
ffvelrnd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( a ` c ) e. K ) |
295 |
131 133
|
ifcld |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> if ( c e. d , .1. , .0. ) e. K ) |
296 |
3 136
|
grpsubcl |
|- ( ( R e. Grp /\ ( a ` c ) e. K /\ if ( c e. d , .1. , .0. ) e. K ) -> ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) e. K ) |
297 |
115 294 295 296
|
syl3anc |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) e. K ) |
298 |
3 7 5
|
ringridm |
|- ( ( R e. Ring /\ ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) e. K ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .1. ) = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) ) |
299 |
113 297 298
|
syl2anc |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .1. ) = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) ) |
300 |
299
|
ad2antrr |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ e = c ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .1. ) = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) ) |
301 |
293 300
|
eqtr4d |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ e = c ) -> ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .1. ) ) |
302 |
141
|
adantl |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ e = c ) -> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) = ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) ) |
303 |
|
iftrue |
|- ( e = c -> if ( e = c , .1. , .0. ) = .1. ) |
304 |
303
|
oveq2d |
|- ( e = c -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( e = c , .1. , .0. ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .1. ) ) |
305 |
304
|
adantl |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ e = c ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( e = c , .1. , .0. ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .1. ) ) |
306 |
301 302 305
|
3eqtr4d |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ e = c ) -> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( e = c , .1. , .0. ) ) ) |
307 |
3 7 4
|
ringrz |
|- ( ( R e. Ring /\ ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) e. K ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) = .0. ) |
308 |
113 297 307
|
syl2anc |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) = .0. ) |
309 |
308
|
eqcomd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> .0. = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) ) |
310 |
309
|
ad2antrr |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ -. e = c ) -> .0. = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) ) |
311 |
150
|
adantl |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ -. e = c ) -> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) = .0. ) |
312 |
|
iffalse |
|- ( -. e = c -> if ( e = c , .1. , .0. ) = .0. ) |
313 |
312
|
oveq2d |
|- ( -. e = c -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( e = c , .1. , .0. ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) ) |
314 |
313
|
adantl |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ -. e = c ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( e = c , .1. , .0. ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) ) |
315 |
310 311 314
|
3eqtr4d |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) /\ -. e = c ) -> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( e = c , .1. , .0. ) ) ) |
316 |
306 315
|
pm2.61dan |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( e = c , .1. , .0. ) ) ) |
317 |
170
|
adantl |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( 1st ` e ) e. { ( 1st ` c ) } ) |
318 |
317 171
|
syl |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( 1st ` e ) = ( 1st ` c ) ) |
319 |
318
|
iftrued |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) = if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) ) |
320 |
318
|
iftrued |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) = if ( e = c , .1. , .0. ) ) |
321 |
320
|
oveq2d |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( e = c , .1. , .0. ) ) ) |
322 |
316 319 321
|
3eqtr4d |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) |
323 |
322
|
mpteq2dva |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) |
324 |
|
ovexd |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) e. _V ) |
325 |
165 162
|
ifex |
|- if ( e = c , .1. , .0. ) e. _V |
326 |
325 167
|
ifex |
|- if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) e. _V |
327 |
326
|
a1i |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( { ( 1st ` c ) } X. N ) ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) e. _V ) |
328 |
|
fconstmpt |
|- ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) ) |
329 |
328
|
a1i |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) ) ) |
330 |
127
|
resmptd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) |
331 |
160 324 327 329 330
|
offval2 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) = ( e e. ( { ( 1st ` c ) } X. N ) |-> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) |
332 |
323 180 331
|
3eqtr4d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) ) |
333 |
|
iffalse |
|- ( -. ( 1st ` e ) = ( 1st ` c ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) = ( a ` e ) ) |
334 |
|
iffalse |
|- ( -. ( 1st ` e ) = ( 1st ` c ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) = ( a ` e ) ) |
335 |
333 334
|
eqtr4d |
|- ( -. ( 1st ` e ) = ( 1st ` c ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) = if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |
336 |
190 335
|
syl |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( ( N \ { ( 1st ` c ) } ) X. N ) ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) = if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |
337 |
336
|
mpteq2dva |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) |
338 |
|
resmpt |
|- ( ( ( N \ { ( 1st ` c ) } ) X. N ) C_ ( N X. N ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) |
339 |
195 338
|
mp1i |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( e e. ( ( N \ { ( 1st ` c ) } ) X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) |
340 |
337 197 339
|
3eqtr4d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
341 |
131 133
|
ifcld |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> if ( e = c , .1. , .0. ) e. K ) |
342 |
341
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> if ( e = c , .1. , .0. ) e. K ) |
343 |
342 211
|
ifcld |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ e e. ( N X. N ) ) -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) e. K ) |
344 |
343
|
fmpttd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) : ( N X. N ) --> K ) |
345 |
|
elmapg |
|- ( ( K e. _V /\ ( N X. N ) e. Fin ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) e. ( K ^m ( N X. N ) ) <-> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) : ( N X. N ) --> K ) ) |
346 |
214 216 345
|
sylancr |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) e. ( K ^m ( N X. N ) ) <-> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) : ( N X. N ) --> K ) ) |
347 |
344 346
|
mpbird |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) e. ( K ^m ( N X. N ) ) ) |
348 |
347 222
|
eleqtrd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) e. B ) |
349 |
13
|
3ad2ant1 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
350 |
|
reseq1 |
|- ( x = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( x |` ( { w } X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) |
351 |
350
|
eqeq1d |
|- ( x = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) <-> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) ) ) |
352 |
|
reseq1 |
|- ( x = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( x |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) |
353 |
352
|
eqeq1d |
|- ( x = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) |
354 |
351 353
|
anbi12d |
|- ( x = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) |
355 |
|
fveqeq2 |
|- ( x = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( D ` x ) = ( y .x. ( D ` z ) ) <-> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( y .x. ( D ` z ) ) ) ) |
356 |
354 355
|
imbi12d |
|- ( x = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) <-> ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( y .x. ( D ` z ) ) ) ) ) |
357 |
356
|
2ralbidv |
|- ( x = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) -> ( A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( y .x. ( D ` z ) ) ) ) ) |
358 |
|
sneq |
|- ( y = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) -> { y } = { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) |
359 |
358
|
xpeq2d |
|- ( y = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) -> ( ( { w } X. N ) X. { y } ) = ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) ) |
360 |
359
|
oveq1d |
|- ( y = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) -> ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) ) |
361 |
360
|
eqeq2d |
|- ( y = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) <-> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) ) ) |
362 |
361
|
anbi1d |
|- ( y = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) -> ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) |
363 |
|
oveq1 |
|- ( y = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) -> ( y .x. ( D ` z ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) ) |
364 |
363
|
eqeq2d |
|- ( y = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) -> ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( y .x. ( D ` z ) ) <-> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) ) ) |
365 |
362 364
|
imbi12d |
|- ( y = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) -> ( ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( y .x. ( D ` z ) ) ) <-> ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) ) ) ) |
366 |
365
|
2ralbidv |
|- ( y = ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) -> ( A. z e. B A. w e. N ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( y .x. ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) ) ) ) |
367 |
357 366
|
rspc2va |
|- ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) e. B /\ ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) e. K ) /\ A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) -> A. z e. B A. w e. N ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) ) ) |
368 |
235 297 349 367
|
syl21anc |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> A. z e. B A. w e. N ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) ) ) |
369 |
|
reseq1 |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( z |` ( { w } X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) |
370 |
369
|
oveq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) ) |
371 |
370
|
eqeq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) <-> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) ) ) |
372 |
|
reseq1 |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( z |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) |
373 |
372
|
eqeq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) ) |
374 |
371 373
|
anbi12d |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) ) ) |
375 |
|
fveq2 |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( D ` z ) = ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) |
376 |
375
|
oveq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) ) |
377 |
376
|
eqeq2d |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) <-> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) |
378 |
374 377
|
imbi12d |
|- ( z = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) ) <-> ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) ) |
379 |
270
|
xpeq1d |
|- ( w = ( 1st ` c ) -> ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) = ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) ) |
380 |
270
|
reseq2d |
|- ( w = ( 1st ` c ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) |
381 |
379 380
|
oveq12d |
|- ( w = ( 1st ` c ) -> ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) = ( ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) ) |
382 |
272 381
|
eqeq12d |
|- ( w = ( 1st ` c ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) <-> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) ) ) |
383 |
277
|
reseq2d |
|- ( w = ( 1st ` c ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) |
384 |
279 383
|
eqeq12d |
|- ( w = ( 1st ` c ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) <-> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) ) |
385 |
382 384
|
anbi12d |
|- ( w = ( 1st ` c ) -> ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) ) ) |
386 |
385
|
imbi1d |
|- ( w = ( 1st ` c ) -> ( ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) ) <-> ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) ) |
387 |
378 386
|
rspc2va |
|- ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) e. B /\ ( 1st ` c ) e. N ) /\ A. z e. B A. w e. N ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` z ) ) ) ) -> ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) |
388 |
348 124 368 387
|
syl21anc |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) = ( ( ( { ( 1st ` c ) } X. N ) X. { ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) } ) oF .x. ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( { ( 1st ` c ) } X. N ) ) ) /\ ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |` ( ( N \ { ( 1st ` c ) } ) X. N ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) ) ) |
389 |
332 340 388
|
mp2and |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) ) |
390 |
389
|
oveq1d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) = ( ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) |
391 |
104 105 106 390
|
syl3anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , ( ( a ` e ) ( -g ` R ) if ( e e. d , .1. , .0. ) ) , .0. ) , ( a ` e ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) = ( ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) ) |
392 |
|
simpl3 |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( b u. { c } ) e. Y ) |
393 |
|
simprlr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> d e. ( N ^m N ) ) |
394 |
|
simprr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) |
395 |
|
ralss |
|- ( b C_ ( b u. { c } ) -> ( A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) <-> A. w e. ( b u. { c } ) ( w e. b -> ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) ) |
396 |
99 395
|
ax-mp |
|- ( A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) <-> A. w e. ( b u. { c } ) ( w e. b -> ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) |
397 |
|
iftrue |
|- ( ( 1st ` w ) = ( 1st ` c ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w = c , .1. , .0. ) ) |
398 |
397
|
adantl |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w = c , .1. , .0. ) ) |
399 |
|
ibar |
|- ( ( 1st ` w ) = ( 1st ` c ) -> ( ( 2nd ` w ) = ( 2nd ` c ) <-> ( ( 1st ` w ) = ( 1st ` c ) /\ ( 2nd ` w ) = ( 2nd ` c ) ) ) ) |
400 |
399
|
adantl |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( ( 2nd ` w ) = ( 2nd ` c ) <-> ( ( 1st ` w ) = ( 1st ` c ) /\ ( 2nd ` w ) = ( 2nd ` c ) ) ) ) |
401 |
|
relxp |
|- Rel ( N X. N ) |
402 |
|
simpl2 |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) -> ( b u. { c } ) C_ ( N X. N ) ) |
403 |
402
|
sselda |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) -> w e. ( N X. N ) ) |
404 |
403
|
adantr |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> w e. ( N X. N ) ) |
405 |
|
1st2nd |
|- ( ( Rel ( N X. N ) /\ w e. ( N X. N ) ) -> w = <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
406 |
401 404 405
|
sylancr |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> w = <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
407 |
406
|
eleq1d |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
408 |
|
simpr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) -> d e. ( N ^m N ) ) |
409 |
|
elmapi |
|- ( d e. ( N ^m N ) -> d : N --> N ) |
410 |
409
|
adantl |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) -> d : N --> N ) |
411 |
124
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) -> ( 1st ` c ) e. N ) |
412 |
|
xp2nd |
|- ( c e. ( N X. N ) -> ( 2nd ` c ) e. N ) |
413 |
122 412
|
syl |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( 2nd ` c ) e. N ) |
414 |
413
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) -> ( 2nd ` c ) e. N ) |
415 |
|
fsets |
|- ( ( ( d e. ( N ^m N ) /\ d : N --> N ) /\ ( 1st ` c ) e. N /\ ( 2nd ` c ) e. N ) -> ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) : N --> N ) |
416 |
408 410 411 414 415
|
syl211anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) -> ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) : N --> N ) |
417 |
416
|
ffnd |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) -> ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) Fn N ) |
418 |
417
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) Fn N ) |
419 |
|
xp1st |
|- ( w e. ( N X. N ) -> ( 1st ` w ) e. N ) |
420 |
403 419
|
syl |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) -> ( 1st ` w ) e. N ) |
421 |
420
|
adantr |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( 1st ` w ) e. N ) |
422 |
|
fnopfvb |
|- ( ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) Fn N /\ ( 1st ` w ) e. N ) -> ( ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` w ) ) = ( 2nd ` w ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
423 |
418 421 422
|
syl2anc |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` w ) ) = ( 2nd ` w ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
424 |
|
fveq2 |
|- ( ( 1st ` w ) = ( 1st ` c ) -> ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` w ) ) = ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` c ) ) ) |
425 |
424
|
adantl |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` w ) ) = ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` c ) ) ) |
426 |
|
vex |
|- d e. _V |
427 |
|
fvex |
|- ( 1st ` c ) e. _V |
428 |
|
fvex |
|- ( 2nd ` c ) e. _V |
429 |
|
fvsetsid |
|- ( ( d e. _V /\ ( 1st ` c ) e. _V /\ ( 2nd ` c ) e. _V ) -> ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` c ) ) = ( 2nd ` c ) ) |
430 |
426 427 428 429
|
mp3an |
|- ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` c ) ) = ( 2nd ` c ) |
431 |
425 430
|
eqtrdi |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` w ) ) = ( 2nd ` c ) ) |
432 |
431
|
eqeq1d |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` w ) ) = ( 2nd ` w ) <-> ( 2nd ` c ) = ( 2nd ` w ) ) ) |
433 |
|
eqcom |
|- ( ( 2nd ` c ) = ( 2nd ` w ) <-> ( 2nd ` w ) = ( 2nd ` c ) ) |
434 |
432 433
|
bitrdi |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ` ( 1st ` w ) ) = ( 2nd ` w ) <-> ( 2nd ` w ) = ( 2nd ` c ) ) ) |
435 |
407 423 434
|
3bitr2rd |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( ( 2nd ` w ) = ( 2nd ` c ) <-> w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
436 |
122
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> c e. ( N X. N ) ) |
437 |
|
xpopth |
|- ( ( w e. ( N X. N ) /\ c e. ( N X. N ) ) -> ( ( ( 1st ` w ) = ( 1st ` c ) /\ ( 2nd ` w ) = ( 2nd ` c ) ) <-> w = c ) ) |
438 |
404 436 437
|
syl2anc |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( ( ( 1st ` w ) = ( 1st ` c ) /\ ( 2nd ` w ) = ( 2nd ` c ) ) <-> w = c ) ) |
439 |
400 435 438
|
3bitr3rd |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( w = c <-> w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
440 |
439
|
ifbid |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> if ( w = c , .1. , .0. ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) |
441 |
398 440
|
eqtrd |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) |
442 |
441
|
a1d |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ ( 1st ` w ) = ( 1st ` c ) ) -> ( ( w e. b -> ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
443 |
|
elsni |
|- ( w e. { c } -> w = c ) |
444 |
443
|
fveq2d |
|- ( w e. { c } -> ( 1st ` w ) = ( 1st ` c ) ) |
445 |
444
|
con3i |
|- ( -. ( 1st ` w ) = ( 1st ` c ) -> -. w e. { c } ) |
446 |
445
|
adantl |
|- ( ( w e. ( b u. { c } ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> -. w e. { c } ) |
447 |
|
elun |
|- ( w e. ( b u. { c } ) <-> ( w e. b \/ w e. { c } ) ) |
448 |
447
|
biimpi |
|- ( w e. ( b u. { c } ) -> ( w e. b \/ w e. { c } ) ) |
449 |
448
|
adantr |
|- ( ( w e. ( b u. { c } ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> ( w e. b \/ w e. { c } ) ) |
450 |
|
orel2 |
|- ( -. w e. { c } -> ( ( w e. b \/ w e. { c } ) -> w e. b ) ) |
451 |
446 449 450
|
sylc |
|- ( ( w e. ( b u. { c } ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> w e. b ) |
452 |
451
|
adantll |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> w e. b ) |
453 |
|
iffalse |
|- ( -. ( 1st ` w ) = ( 1st ` c ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , if ( w e. d , .1. , .0. ) ) = if ( w e. d , .1. , .0. ) ) |
454 |
453
|
adantl |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , if ( w e. d , .1. , .0. ) ) = if ( w e. d , .1. , .0. ) ) |
455 |
|
setsres |
|- ( d e. _V -> ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) |` ( _V \ { ( 1st ` c ) } ) ) = ( d |` ( _V \ { ( 1st ` c ) } ) ) ) |
456 |
455
|
eleq2d |
|- ( d e. _V -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) |` ( _V \ { ( 1st ` c ) } ) ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d |` ( _V \ { ( 1st ` c ) } ) ) ) ) |
457 |
426 456
|
mp1i |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) |` ( _V \ { ( 1st ` c ) } ) ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d |` ( _V \ { ( 1st ` c ) } ) ) ) ) |
458 |
|
fvex |
|- ( 1st ` w ) e. _V |
459 |
458
|
a1i |
|- ( -. ( 1st ` w ) = ( 1st ` c ) -> ( 1st ` w ) e. _V ) |
460 |
|
neqne |
|- ( -. ( 1st ` w ) = ( 1st ` c ) -> ( 1st ` w ) =/= ( 1st ` c ) ) |
461 |
|
eldifsn |
|- ( ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) <-> ( ( 1st ` w ) e. _V /\ ( 1st ` w ) =/= ( 1st ` c ) ) ) |
462 |
459 460 461
|
sylanbrc |
|- ( -. ( 1st ` w ) = ( 1st ` c ) -> ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) ) |
463 |
|
fvex |
|- ( 2nd ` w ) e. _V |
464 |
463
|
opres |
|- ( ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) |` ( _V \ { ( 1st ` c ) } ) ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
465 |
464
|
adantl |
|- ( ( w e. ( N X. N ) /\ ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) ) -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) |` ( _V \ { ( 1st ` c ) } ) ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
466 |
|
1st2nd2 |
|- ( w e. ( N X. N ) -> w = <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
467 |
466
|
eleq1d |
|- ( w e. ( N X. N ) -> ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
468 |
467
|
adantr |
|- ( ( w e. ( N X. N ) /\ ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) ) -> ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
469 |
465 468
|
bitr4d |
|- ( ( w e. ( N X. N ) /\ ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) ) -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) |` ( _V \ { ( 1st ` c ) } ) ) <-> w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
470 |
403 462 469
|
syl2an |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) |` ( _V \ { ( 1st ` c ) } ) ) <-> w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
471 |
463
|
opres |
|- ( ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d |` ( _V \ { ( 1st ` c ) } ) ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. d ) ) |
472 |
471
|
adantl |
|- ( ( w e. ( N X. N ) /\ ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) ) -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d |` ( _V \ { ( 1st ` c ) } ) ) <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. d ) ) |
473 |
466
|
eleq1d |
|- ( w e. ( N X. N ) -> ( w e. d <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. d ) ) |
474 |
473
|
adantr |
|- ( ( w e. ( N X. N ) /\ ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) ) -> ( w e. d <-> <. ( 1st ` w ) , ( 2nd ` w ) >. e. d ) ) |
475 |
472 474
|
bitr4d |
|- ( ( w e. ( N X. N ) /\ ( 1st ` w ) e. ( _V \ { ( 1st ` c ) } ) ) -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d |` ( _V \ { ( 1st ` c ) } ) ) <-> w e. d ) ) |
476 |
403 462 475
|
syl2an |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> ( <. ( 1st ` w ) , ( 2nd ` w ) >. e. ( d |` ( _V \ { ( 1st ` c ) } ) ) <-> w e. d ) ) |
477 |
457 470 476
|
3bitr3rd |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> ( w e. d <-> w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
478 |
477
|
ifbid |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> if ( w e. d , .1. , .0. ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) |
479 |
454 478
|
eqtrd |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , if ( w e. d , .1. , .0. ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) |
480 |
|
ifeq2 |
|- ( ( a ` w ) = if ( w e. d , .1. , .0. ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , if ( w e. d , .1. , .0. ) ) ) |
481 |
480
|
eqeq1d |
|- ( ( a ` w ) = if ( w e. d , .1. , .0. ) -> ( if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) <-> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , if ( w e. d , .1. , .0. ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
482 |
479 481
|
syl5ibrcom |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> ( ( a ` w ) = if ( w e. d , .1. , .0. ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
483 |
452 482
|
embantd |
|- ( ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) /\ -. ( 1st ` w ) = ( 1st ` c ) ) -> ( ( w e. b -> ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
484 |
442 483
|
pm2.61dan |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) -> ( ( w e. b -> ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
485 |
|
fveqeq2 |
|- ( e = w -> ( ( 1st ` e ) = ( 1st ` c ) <-> ( 1st ` w ) = ( 1st ` c ) ) ) |
486 |
|
equequ1 |
|- ( e = w -> ( e = c <-> w = c ) ) |
487 |
486
|
ifbid |
|- ( e = w -> if ( e = c , .1. , .0. ) = if ( w = c , .1. , .0. ) ) |
488 |
|
fveq2 |
|- ( e = w -> ( a ` e ) = ( a ` w ) ) |
489 |
485 487 488
|
ifbieq12d |
|- ( e = w -> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) = if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) ) |
490 |
|
eqid |
|- ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) |
491 |
165 162
|
ifex |
|- if ( w = c , .1. , .0. ) e. _V |
492 |
|
fvex |
|- ( a ` w ) e. _V |
493 |
491 492
|
ifex |
|- if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) e. _V |
494 |
489 490 493
|
fvmpt |
|- ( w e. ( N X. N ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) ) |
495 |
494
|
eqeq1d |
|- ( w e. ( N X. N ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) <-> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
496 |
403 495
|
syl |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) <-> if ( ( 1st ` w ) = ( 1st ` c ) , if ( w = c , .1. , .0. ) , ( a ` w ) ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
497 |
484 496
|
sylibrd |
|- ( ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) /\ w e. ( b u. { c } ) ) -> ( ( w e. b -> ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
498 |
497
|
ralimdva |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) -> ( A. w e. ( b u. { c } ) ( w e. b -> ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
499 |
396 498
|
syl5bi |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ d e. ( N ^m N ) ) -> ( A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) -> A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
500 |
499
|
impr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) |
501 |
500
|
3adantr1 |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) |
502 |
348
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) e. B ) |
503 |
|
simpr2 |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> d e. ( N ^m N ) ) |
504 |
503 409
|
syl |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> d : N --> N ) |
505 |
124
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( 1st ` c ) e. N ) |
506 |
413
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( 2nd ` c ) e. N ) |
507 |
503 504 505 506 415
|
syl211anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) : N --> N ) |
508 |
158 158
|
elmapd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) e. ( N ^m N ) <-> ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) : N --> N ) ) |
509 |
508
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) e. ( N ^m N ) <-> ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) : N --> N ) ) |
510 |
507 509
|
mpbird |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) e. ( N ^m N ) ) |
511 |
|
simpr1 |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( b u. { c } ) e. Y ) |
512 |
|
raleq |
|- ( x = ( b u. { c } ) -> ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) ) ) |
513 |
512
|
imbi1d |
|- ( x = ( b u. { c } ) -> ( ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
514 |
513
|
2ralbidv |
|- ( x = ( b u. { c } ) -> ( A. y e. B A. z e. ( N ^m N ) ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
515 |
514 15
|
elab2g |
|- ( ( b u. { c } ) e. Y -> ( ( b u. { c } ) e. Y <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
516 |
515
|
ibi |
|- ( ( b u. { c } ) e. Y -> A. y e. B A. z e. ( N ^m N ) ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) |
517 |
511 516
|
syl |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> A. y e. B A. z e. ( N ^m N ) ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) |
518 |
|
fveq1 |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( y ` w ) = ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) ) |
519 |
518
|
eqeq1d |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( y ` w ) = if ( w e. z , .1. , .0. ) <-> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) ) ) |
520 |
519
|
ralbidv |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) ) ) |
521 |
|
fveqeq2 |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( D ` y ) = .0. <-> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) |
522 |
520 521
|
imbi12d |
|- ( y = ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) -> ( ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) ) |
523 |
|
eleq2 |
|- ( z = ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) -> ( w e. z <-> w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) ) ) |
524 |
523
|
ifbid |
|- ( z = ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) -> if ( w e. z , .1. , .0. ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) |
525 |
524
|
eqeq2d |
|- ( z = ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) -> ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) <-> ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
526 |
525
|
ralbidv |
|- ( z = ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) -> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) ) ) |
527 |
526
|
imbi1d |
|- ( z = ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) -> ( ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) <-> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) ) |
528 |
522 527
|
rspc2va |
|- ( ( ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) e. B /\ ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) e. ( N ^m N ) ) /\ A. y e. B A. z e. ( N ^m N ) ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) -> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) |
529 |
502 510 517 528
|
syl21anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. ( d sSet <. ( 1st ` c ) , ( 2nd ` c ) >. ) , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) |
530 |
501 529
|
mpd |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) |
531 |
530
|
oveq2d |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) = ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) ) |
532 |
118
|
unssad |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> b C_ ( N X. N ) ) |
533 |
532
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> b C_ ( N X. N ) ) |
534 |
|
simpr3 |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) |
535 |
|
ssel2 |
|- ( ( b C_ ( N X. N ) /\ w e. b ) -> w e. ( N X. N ) ) |
536 |
535
|
adantr |
|- ( ( ( b C_ ( N X. N ) /\ w e. b ) /\ ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> w e. ( N X. N ) ) |
537 |
|
elequ1 |
|- ( e = w -> ( e e. d <-> w e. d ) ) |
538 |
537
|
ifbid |
|- ( e = w -> if ( e e. d , .1. , .0. ) = if ( w e. d , .1. , .0. ) ) |
539 |
486 538 488
|
ifbieq12d |
|- ( e = w -> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) = if ( w = c , if ( w e. d , .1. , .0. ) , ( a ` w ) ) ) |
540 |
|
eqid |
|- ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) |
541 |
165 162
|
ifex |
|- if ( w e. d , .1. , .0. ) e. _V |
542 |
541 492
|
ifex |
|- if ( w = c , if ( w e. d , .1. , .0. ) , ( a ` w ) ) e. _V |
543 |
539 540 542
|
fvmpt |
|- ( w e. ( N X. N ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w = c , if ( w e. d , .1. , .0. ) , ( a ` w ) ) ) |
544 |
536 543
|
syl |
|- ( ( ( b C_ ( N X. N ) /\ w e. b ) /\ ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w = c , if ( w e. d , .1. , .0. ) , ( a ` w ) ) ) |
545 |
|
ifeq2 |
|- ( ( a ` w ) = if ( w e. d , .1. , .0. ) -> if ( w = c , if ( w e. d , .1. , .0. ) , ( a ` w ) ) = if ( w = c , if ( w e. d , .1. , .0. ) , if ( w e. d , .1. , .0. ) ) ) |
546 |
545
|
adantl |
|- ( ( ( b C_ ( N X. N ) /\ w e. b ) /\ ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> if ( w = c , if ( w e. d , .1. , .0. ) , ( a ` w ) ) = if ( w = c , if ( w e. d , .1. , .0. ) , if ( w e. d , .1. , .0. ) ) ) |
547 |
|
ifid |
|- if ( w = c , if ( w e. d , .1. , .0. ) , if ( w e. d , .1. , .0. ) ) = if ( w e. d , .1. , .0. ) |
548 |
546 547
|
eqtrdi |
|- ( ( ( b C_ ( N X. N ) /\ w e. b ) /\ ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> if ( w = c , if ( w e. d , .1. , .0. ) , ( a ` w ) ) = if ( w e. d , .1. , .0. ) ) |
549 |
544 548
|
eqtrd |
|- ( ( ( b C_ ( N X. N ) /\ w e. b ) /\ ( a ` w ) = if ( w e. d , .1. , .0. ) ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) ) |
550 |
549
|
ex |
|- ( ( b C_ ( N X. N ) /\ w e. b ) -> ( ( a ` w ) = if ( w e. d , .1. , .0. ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) ) ) |
551 |
550
|
ralimdva |
|- ( b C_ ( N X. N ) -> ( A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) -> A. w e. b ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) ) ) |
552 |
533 534 551
|
sylc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> A. w e. b ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) ) |
553 |
142 291
|
eqtrd |
|- ( e = c -> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) = if ( c e. d , .1. , .0. ) ) |
554 |
165 162
|
ifex |
|- if ( c e. d , .1. , .0. ) e. _V |
555 |
553 540 554
|
fvmpt |
|- ( c e. ( N X. N ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` c ) = if ( c e. d , .1. , .0. ) ) |
556 |
122 555
|
syl |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` c ) = if ( c e. d , .1. , .0. ) ) |
557 |
556
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` c ) = if ( c e. d , .1. , .0. ) ) |
558 |
|
fveq2 |
|- ( w = c -> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` c ) ) |
559 |
|
elequ1 |
|- ( w = c -> ( w e. d <-> c e. d ) ) |
560 |
559
|
ifbid |
|- ( w = c -> if ( w e. d , .1. , .0. ) = if ( c e. d , .1. , .0. ) ) |
561 |
558 560
|
eqeq12d |
|- ( w = c -> ( ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) <-> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` c ) = if ( c e. d , .1. , .0. ) ) ) |
562 |
561
|
ralunsn |
|- ( c e. _V -> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) <-> ( A. w e. b ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) /\ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` c ) = if ( c e. d , .1. , .0. ) ) ) ) |
563 |
562
|
elv |
|- ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) <-> ( A. w e. b ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) /\ ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` c ) = if ( c e. d , .1. , .0. ) ) ) |
564 |
552 557 563
|
sylanbrc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) ) |
565 |
223
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) e. B ) |
566 |
|
fveq1 |
|- ( y = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( y ` w ) = ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) ) |
567 |
566
|
eqeq1d |
|- ( y = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( y ` w ) = if ( w e. z , .1. , .0. ) <-> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) ) ) |
568 |
567
|
ralbidv |
|- ( y = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) ) ) |
569 |
|
fveqeq2 |
|- ( y = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( D ` y ) = .0. <-> ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) |
570 |
568 569
|
imbi12d |
|- ( y = ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) -> ( ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) ) |
571 |
|
elequ2 |
|- ( z = d -> ( w e. z <-> w e. d ) ) |
572 |
571
|
ifbid |
|- ( z = d -> if ( w e. z , .1. , .0. ) = if ( w e. d , .1. , .0. ) ) |
573 |
572
|
eqeq2d |
|- ( z = d -> ( ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) <-> ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) ) ) |
574 |
573
|
ralbidv |
|- ( z = d -> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) ) ) |
575 |
574
|
imbi1d |
|- ( z = d -> ( ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) <-> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) ) |
576 |
570 575
|
rspc2va |
|- ( ( ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) e. B /\ d e. ( N ^m N ) ) /\ A. y e. B A. z e. ( N ^m N ) ( A. w e. ( b u. { c } ) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) -> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) |
577 |
565 503 517 576
|
syl21anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( A. w e. ( b u. { c } ) ( ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ` w ) = if ( w e. d , .1. , .0. ) -> ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) ) |
578 |
564 577
|
mpd |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) = .0. ) |
579 |
531 578
|
oveq12d |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) = ( ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) .+ .0. ) ) |
580 |
308
|
oveq1d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) .+ .0. ) = ( .0. .+ .0. ) ) |
581 |
3 6 4
|
grplid |
|- ( ( R e. Grp /\ .0. e. K ) -> ( .0. .+ .0. ) = .0. ) |
582 |
115 133 581
|
syl2anc |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( .0. .+ .0. ) = .0. ) |
583 |
580 582
|
eqtrd |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) -> ( ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) .+ .0. ) = .0. ) |
584 |
583
|
adantr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. .0. ) .+ .0. ) = .0. ) |
585 |
579 584
|
eqtrd |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ a e. B ) /\ ( ( b u. { c } ) e. Y /\ d e. ( N ^m N ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) = .0. ) |
586 |
104 105 106 392 393 394 585
|
syl33anc |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( ( ( ( a ` c ) ( -g ` R ) if ( c e. d , .1. , .0. ) ) .x. ( D ` ( e e. ( N X. N ) |-> if ( ( 1st ` e ) = ( 1st ` c ) , if ( e = c , .1. , .0. ) , ( a ` e ) ) ) ) ) .+ ( D ` ( e e. ( N X. N ) |-> if ( e = c , if ( e e. d , .1. , .0. ) , ( a ` e ) ) ) ) ) = .0. ) |
587 |
288 391 586
|
3eqtrd |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( ( a e. B /\ d e. ( N ^m N ) ) /\ A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) ) ) -> ( D ` a ) = .0. ) |
588 |
587
|
expr |
|- ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) /\ ( a e. B /\ d e. ( N ^m N ) ) ) -> ( A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) -> ( D ` a ) = .0. ) ) |
589 |
588
|
ralrimivva |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) -> A. a e. B A. d e. ( N ^m N ) ( A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) -> ( D ` a ) = .0. ) ) |
590 |
|
fveq1 |
|- ( a = y -> ( a ` w ) = ( y ` w ) ) |
591 |
590
|
eqeq1d |
|- ( a = y -> ( ( a ` w ) = if ( w e. d , .1. , .0. ) <-> ( y ` w ) = if ( w e. d , .1. , .0. ) ) ) |
592 |
591
|
ralbidv |
|- ( a = y -> ( A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) <-> A. w e. b ( y ` w ) = if ( w e. d , .1. , .0. ) ) ) |
593 |
|
fveqeq2 |
|- ( a = y -> ( ( D ` a ) = .0. <-> ( D ` y ) = .0. ) ) |
594 |
592 593
|
imbi12d |
|- ( a = y -> ( ( A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) -> ( D ` a ) = .0. ) <-> ( A. w e. b ( y ` w ) = if ( w e. d , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
595 |
|
elequ2 |
|- ( d = z -> ( w e. d <-> w e. z ) ) |
596 |
595
|
ifbid |
|- ( d = z -> if ( w e. d , .1. , .0. ) = if ( w e. z , .1. , .0. ) ) |
597 |
596
|
eqeq2d |
|- ( d = z -> ( ( y ` w ) = if ( w e. d , .1. , .0. ) <-> ( y ` w ) = if ( w e. z , .1. , .0. ) ) ) |
598 |
597
|
ralbidv |
|- ( d = z -> ( A. w e. b ( y ` w ) = if ( w e. d , .1. , .0. ) <-> A. w e. b ( y ` w ) = if ( w e. z , .1. , .0. ) ) ) |
599 |
598
|
imbi1d |
|- ( d = z -> ( ( A. w e. b ( y ` w ) = if ( w e. d , .1. , .0. ) -> ( D ` y ) = .0. ) <-> ( A. w e. b ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
600 |
594 599
|
cbvral2vw |
|- ( A. a e. B A. d e. ( N ^m N ) ( A. w e. b ( a ` w ) = if ( w e. d , .1. , .0. ) -> ( D ` a ) = .0. ) <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. b ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) |
601 |
589 600
|
sylib |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) -> A. y e. B A. z e. ( N ^m N ) ( A. w e. b ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) |
602 |
|
vex |
|- b e. _V |
603 |
|
raleq |
|- ( x = b -> ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. b ( y ` w ) = if ( w e. z , .1. , .0. ) ) ) |
604 |
603
|
imbi1d |
|- ( x = b -> ( ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> ( A. w e. b ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
605 |
604
|
2ralbidv |
|- ( x = b -> ( A. y e. B A. z e. ( N ^m N ) ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. b ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
606 |
602 605 15
|
elab2 |
|- ( b e. Y <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. b ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) |
607 |
601 606
|
sylibr |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ ( b u. { c } ) e. Y ) -> b e. Y ) |
608 |
607
|
3expia |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) ) -> ( ( b u. { c } ) e. Y -> b e. Y ) ) |
609 |
608
|
con3d |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) ) -> ( -. b e. Y -> -. ( b u. { c } ) e. Y ) ) |
610 |
609
|
3adant3 |
|- ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ -. (/) e. Y ) -> ( -. b e. Y -> -. ( b u. { c } ) e. Y ) ) |
611 |
610
|
a1i |
|- ( ( b e. Fin /\ -. c e. b ) -> ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ -. (/) e. Y ) -> ( -. b e. Y -> -. ( b u. { c } ) e. Y ) ) ) |
612 |
611
|
a2d |
|- ( ( b e. Fin /\ -. c e. b ) -> ( ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. b e. Y ) -> ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. ( b u. { c } ) e. Y ) ) ) |
613 |
103 612
|
syl5 |
|- ( ( b e. Fin /\ -. c e. b ) -> ( ( ( ph /\ b C_ ( N X. N ) /\ -. (/) e. Y ) -> -. b e. Y ) -> ( ( ph /\ ( b u. { c } ) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. ( b u. { c } ) e. Y ) ) ) |
614 |
82 87 92 97 98 613
|
findcard2s |
|- ( ( N X. N ) e. Fin -> ( ( ph /\ ( N X. N ) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. ( N X. N ) e. Y ) ) |
615 |
77 614
|
mpcom |
|- ( ( ph /\ ( N X. N ) C_ ( N X. N ) /\ -. (/) e. Y ) -> -. ( N X. N ) e. Y ) |
616 |
615
|
3exp |
|- ( ph -> ( ( N X. N ) C_ ( N X. N ) -> ( -. (/) e. Y -> -. ( N X. N ) e. Y ) ) ) |
617 |
76 616
|
mpi |
|- ( ph -> ( -. (/) e. Y -> -. ( N X. N ) e. Y ) ) |
618 |
75 617
|
mt4d |
|- ( ph -> (/) e. Y ) |
619 |
618
|
adantr |
|- ( ( ph /\ a e. B ) -> (/) e. Y ) |
620 |
|
0ex |
|- (/) e. _V |
621 |
|
raleq |
|- ( x = (/) -> ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. (/) ( y ` w ) = if ( w e. z , .1. , .0. ) ) ) |
622 |
621
|
imbi1d |
|- ( x = (/) -> ( ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> ( A. w e. (/) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
623 |
622
|
2ralbidv |
|- ( x = (/) -> ( A. y e. B A. z e. ( N ^m N ) ( A. w e. x ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. (/) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) ) |
624 |
620 623 15
|
elab2 |
|- ( (/) e. Y <-> A. y e. B A. z e. ( N ^m N ) ( A. w e. (/) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) |
625 |
619 624
|
sylib |
|- ( ( ph /\ a e. B ) -> A. y e. B A. z e. ( N ^m N ) ( A. w e. (/) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) |
626 |
|
fveq1 |
|- ( y = a -> ( y ` w ) = ( a ` w ) ) |
627 |
626
|
eqeq1d |
|- ( y = a -> ( ( y ` w ) = if ( w e. z , .1. , .0. ) <-> ( a ` w ) = if ( w e. z , .1. , .0. ) ) ) |
628 |
627
|
ralbidv |
|- ( y = a -> ( A. w e. (/) ( y ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. (/) ( a ` w ) = if ( w e. z , .1. , .0. ) ) ) |
629 |
|
fveqeq2 |
|- ( y = a -> ( ( D ` y ) = .0. <-> ( D ` a ) = .0. ) ) |
630 |
628 629
|
imbi12d |
|- ( y = a -> ( ( A. w e. (/) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) <-> ( A. w e. (/) ( a ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` a ) = .0. ) ) ) |
631 |
|
eleq2 |
|- ( z = ( _I |` N ) -> ( w e. z <-> w e. ( _I |` N ) ) ) |
632 |
631
|
ifbid |
|- ( z = ( _I |` N ) -> if ( w e. z , .1. , .0. ) = if ( w e. ( _I |` N ) , .1. , .0. ) ) |
633 |
632
|
eqeq2d |
|- ( z = ( _I |` N ) -> ( ( a ` w ) = if ( w e. z , .1. , .0. ) <-> ( a ` w ) = if ( w e. ( _I |` N ) , .1. , .0. ) ) ) |
634 |
633
|
ralbidv |
|- ( z = ( _I |` N ) -> ( A. w e. (/) ( a ` w ) = if ( w e. z , .1. , .0. ) <-> A. w e. (/) ( a ` w ) = if ( w e. ( _I |` N ) , .1. , .0. ) ) ) |
635 |
634
|
imbi1d |
|- ( z = ( _I |` N ) -> ( ( A. w e. (/) ( a ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` a ) = .0. ) <-> ( A. w e. (/) ( a ` w ) = if ( w e. ( _I |` N ) , .1. , .0. ) -> ( D ` a ) = .0. ) ) ) |
636 |
630 635
|
rspc2va |
|- ( ( ( a e. B /\ ( _I |` N ) e. ( N ^m N ) ) /\ A. y e. B A. z e. ( N ^m N ) ( A. w e. (/) ( y ` w ) = if ( w e. z , .1. , .0. ) -> ( D ` y ) = .0. ) ) -> ( A. w e. (/) ( a ` w ) = if ( w e. ( _I |` N ) , .1. , .0. ) -> ( D ` a ) = .0. ) ) |
637 |
17 23 625 636
|
syl21anc |
|- ( ( ph /\ a e. B ) -> ( A. w e. (/) ( a ` w ) = if ( w e. ( _I |` N ) , .1. , .0. ) -> ( D ` a ) = .0. ) ) |
638 |
16 637
|
mpi |
|- ( ( ph /\ a e. B ) -> ( D ` a ) = .0. ) |
639 |
638
|
mpteq2dva |
|- ( ph -> ( a e. B |-> ( D ` a ) ) = ( a e. B |-> .0. ) ) |
640 |
10
|
feqmptd |
|- ( ph -> D = ( a e. B |-> ( D ` a ) ) ) |
641 |
|
fconstmpt |
|- ( B X. { .0. } ) = ( a e. B |-> .0. ) |
642 |
641
|
a1i |
|- ( ph -> ( B X. { .0. } ) = ( a e. B |-> .0. ) ) |
643 |
639 640 642
|
3eqtr4d |
|- ( ph -> D = ( B X. { .0. } ) ) |