| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r19.26 |
|- ( A. p e. Prime ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) <-> ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) ) |
| 2 |
|
simpr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> p e. Prime ) |
| 3 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. NN ) |
| 4 |
2 3
|
pccld |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
| 5 |
4
|
nn0red |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt A ) e. RR ) |
| 6 |
|
simpl2 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. NN ) |
| 7 |
2 6
|
pccld |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt B ) e. NN0 ) |
| 8 |
7
|
nn0red |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt B ) e. RR ) |
| 9 |
|
1red |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> 1 e. RR ) |
| 10 |
|
le2add |
|- ( ( ( ( p pCnt A ) e. RR /\ ( p pCnt B ) e. RR ) /\ ( 1 e. RR /\ 1 e. RR ) ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) ) ) |
| 11 |
5 8 9 9 10
|
syl22anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) ) ) |
| 12 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 13 |
|
simpl3 |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( A gcd B ) = 1 ) |
| 14 |
13
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt ( A gcd B ) ) = ( p pCnt 1 ) ) |
| 15 |
3
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. ZZ ) |
| 16 |
6
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. ZZ ) |
| 17 |
|
pcgcd |
|- ( ( p e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
| 18 |
2 15 16 17
|
syl3anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
| 19 |
|
pc1 |
|- ( p e. Prime -> ( p pCnt 1 ) = 0 ) |
| 20 |
19
|
adantl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt 1 ) = 0 ) |
| 21 |
14 18 20
|
3eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) = 0 ) |
| 22 |
|
ifid |
|- if ( ( p pCnt A ) <_ ( p pCnt B ) , 1 , 1 ) = 1 |
| 23 |
|
ifeq12 |
|- ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> if ( ( p pCnt A ) <_ ( p pCnt B ) , 1 , 1 ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
| 24 |
22 23
|
eqtr3id |
|- ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> 1 = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
| 25 |
24
|
eqeq1d |
|- ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> ( 1 = 0 <-> if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) = 0 ) ) |
| 26 |
21 25
|
syl5ibrcom |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> 1 = 0 ) ) |
| 27 |
26
|
necon3ad |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 1 =/= 0 -> -. ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) ) ) |
| 28 |
12 27
|
mpi |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> -. ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) ) |
| 29 |
|
ax-1cn |
|- 1 e. CC |
| 30 |
5
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt A ) e. CC ) |
| 31 |
|
subeq0 |
|- ( ( 1 e. CC /\ ( p pCnt A ) e. CC ) -> ( ( 1 - ( p pCnt A ) ) = 0 <-> 1 = ( p pCnt A ) ) ) |
| 32 |
29 30 31
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 - ( p pCnt A ) ) = 0 <-> 1 = ( p pCnt A ) ) ) |
| 33 |
8
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt B ) e. CC ) |
| 34 |
|
subeq0 |
|- ( ( 1 e. CC /\ ( p pCnt B ) e. CC ) -> ( ( 1 - ( p pCnt B ) ) = 0 <-> 1 = ( p pCnt B ) ) ) |
| 35 |
29 33 34
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 - ( p pCnt B ) ) = 0 <-> 1 = ( p pCnt B ) ) ) |
| 36 |
32 35
|
anbi12d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) <-> ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) ) ) |
| 37 |
28 36
|
mtbird |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> -. ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) |
| 38 |
37
|
adantr |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> -. ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) |
| 39 |
|
eqcom |
|- ( ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) <-> ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) ) |
| 40 |
|
1re |
|- 1 e. RR |
| 41 |
40 40
|
readdcli |
|- ( 1 + 1 ) e. RR |
| 42 |
41
|
recni |
|- ( 1 + 1 ) e. CC |
| 43 |
4 7
|
nn0addcld |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt A ) + ( p pCnt B ) ) e. NN0 ) |
| 44 |
43
|
nn0red |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt A ) + ( p pCnt B ) ) e. RR ) |
| 45 |
44
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt A ) + ( p pCnt B ) ) e. CC ) |
| 46 |
|
subeq0 |
|- ( ( ( 1 + 1 ) e. CC /\ ( ( p pCnt A ) + ( p pCnt B ) ) e. CC ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) ) |
| 47 |
42 45 46
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) ) |
| 48 |
47 39
|
bitrdi |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) ) ) |
| 49 |
9
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> 1 e. CC ) |
| 50 |
49 49 30 33
|
addsub4d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) ) |
| 51 |
50
|
eqeq1d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 ) ) |
| 52 |
48 51
|
bitr3d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) <-> ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) <-> ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 ) ) |
| 54 |
|
subge0 |
|- ( ( 1 e. RR /\ ( p pCnt A ) e. RR ) -> ( 0 <_ ( 1 - ( p pCnt A ) ) <-> ( p pCnt A ) <_ 1 ) ) |
| 55 |
40 5 54
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 0 <_ ( 1 - ( p pCnt A ) ) <-> ( p pCnt A ) <_ 1 ) ) |
| 56 |
|
subge0 |
|- ( ( 1 e. RR /\ ( p pCnt B ) e. RR ) -> ( 0 <_ ( 1 - ( p pCnt B ) ) <-> ( p pCnt B ) <_ 1 ) ) |
| 57 |
40 8 56
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 0 <_ ( 1 - ( p pCnt B ) ) <-> ( p pCnt B ) <_ 1 ) ) |
| 58 |
55 57
|
anbi12d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) <-> ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) ) |
| 59 |
|
resubcl |
|- ( ( 1 e. RR /\ ( p pCnt A ) e. RR ) -> ( 1 - ( p pCnt A ) ) e. RR ) |
| 60 |
40 5 59
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 1 - ( p pCnt A ) ) e. RR ) |
| 61 |
|
resubcl |
|- ( ( 1 e. RR /\ ( p pCnt B ) e. RR ) -> ( 1 - ( p pCnt B ) ) e. RR ) |
| 62 |
40 8 61
|
sylancr |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 1 - ( p pCnt B ) ) e. RR ) |
| 63 |
|
add20 |
|- ( ( ( ( 1 - ( p pCnt A ) ) e. RR /\ 0 <_ ( 1 - ( p pCnt A ) ) ) /\ ( ( 1 - ( p pCnt B ) ) e. RR /\ 0 <_ ( 1 - ( p pCnt B ) ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 64 |
63
|
an4s |
|- ( ( ( ( 1 - ( p pCnt A ) ) e. RR /\ ( 1 - ( p pCnt B ) ) e. RR ) /\ ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 65 |
64
|
ex |
|- ( ( ( 1 - ( p pCnt A ) ) e. RR /\ ( 1 - ( p pCnt B ) ) e. RR ) -> ( ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) ) |
| 66 |
60 62 65
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) ) |
| 67 |
58 66
|
sylbird |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) ) |
| 68 |
67
|
imp |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 69 |
53 68
|
bitrd |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 70 |
39 69
|
bitrid |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 71 |
70
|
necon3abid |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) <-> -. ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 72 |
38 71
|
mpbird |
|- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) |
| 73 |
72
|
ex |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) |
| 74 |
11 73
|
jcad |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
| 75 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 76 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
| 77 |
75 76
|
jca |
|- ( A e. NN -> ( A e. ZZ /\ A =/= 0 ) ) |
| 78 |
3 77
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( A e. ZZ /\ A =/= 0 ) ) |
| 79 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 80 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
| 81 |
79 80
|
jca |
|- ( B e. NN -> ( B e. ZZ /\ B =/= 0 ) ) |
| 82 |
6 81
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( B e. ZZ /\ B =/= 0 ) ) |
| 83 |
|
pcmul |
|- ( ( p e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt ( A x. B ) ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) |
| 84 |
2 78 82 83
|
syl3anc |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt ( A x. B ) ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) |
| 85 |
84
|
breq1d |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt ( A x. B ) ) <_ 1 <-> ( ( p pCnt A ) + ( p pCnt B ) ) <_ 1 ) ) |
| 86 |
|
1nn0 |
|- 1 e. NN0 |
| 87 |
|
nn0leltp1 |
|- ( ( ( ( p pCnt A ) + ( p pCnt B ) ) e. NN0 /\ 1 e. NN0 ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ 1 <-> ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) ) ) |
| 88 |
43 86 87
|
sylancl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ 1 <-> ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) ) ) |
| 89 |
|
ltlen |
|- ( ( ( ( p pCnt A ) + ( p pCnt B ) ) e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) <-> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
| 90 |
44 41 89
|
sylancl |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) <-> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
| 91 |
85 88 90
|
3bitrd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt ( A x. B ) ) <_ 1 <-> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
| 92 |
74 91
|
sylibrd |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( p pCnt ( A x. B ) ) <_ 1 ) ) |
| 93 |
92
|
ralimdva |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( A. p e. Prime ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
| 94 |
1 93
|
biimtrrid |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) -> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
| 95 |
|
issqf |
|- ( A e. NN -> ( ( mmu ` A ) =/= 0 <-> A. p e. Prime ( p pCnt A ) <_ 1 ) ) |
| 96 |
|
issqf |
|- ( B e. NN -> ( ( mmu ` B ) =/= 0 <-> A. p e. Prime ( p pCnt B ) <_ 1 ) ) |
| 97 |
95 96
|
bi2anan9 |
|- ( ( A e. NN /\ B e. NN ) -> ( ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) <-> ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) ) ) |
| 98 |
97
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) <-> ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) ) ) |
| 99 |
|
nnmulcl |
|- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) e. NN ) |
| 100 |
99
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( A x. B ) e. NN ) |
| 101 |
|
issqf |
|- ( ( A x. B ) e. NN -> ( ( mmu ` ( A x. B ) ) =/= 0 <-> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
| 102 |
100 101
|
syl |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( mmu ` ( A x. B ) ) =/= 0 <-> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
| 103 |
94 98 102
|
3imtr4d |
|- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) -> ( mmu ` ( A x. B ) ) =/= 0 ) ) |
| 104 |
103
|
imp |
|- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) =/= 0 ) |