Metamath Proof Explorer


Theorem mumullem2

Description: Lemma for mumul . The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion mumullem2 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 r19.26 ( ∀ 𝑝 ∈ ℙ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) )
2 simpr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ )
3 simpl1 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ )
4 2 3 pccld ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 )
5 4 nn0red ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ )
6 simpl2 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℕ )
7 2 6 pccld ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 )
8 7 nn0red ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ )
9 1red ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 1 ∈ ℝ )
10 le2add ( ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℝ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) ∧ ( 1 ∈ ℝ ∧ 1 ∈ ℝ ) ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ) )
11 5 8 9 9 10 syl22anc ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ) )
12 ax-1ne0 1 ≠ 0
13 simpl3 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) = 1 )
14 13 oveq2d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑝 pCnt 1 ) )
15 3 nnzd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ )
16 6 nnzd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ )
17 pcgcd ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) )
18 2 15 16 17 syl3anc ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) )
19 pc1 ( 𝑝 ∈ ℙ → ( 𝑝 pCnt 1 ) = 0 )
20 19 adantl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 1 ) = 0 )
21 14 18 20 3eqtr3d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) = 0 )
22 ifid if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , 1 , 1 ) = 1
23 ifeq12 ( ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) → if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , 1 , 1 ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) )
24 22 23 eqtr3id ( ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) → 1 = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) )
25 24 eqeq1d ( ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) → ( 1 = 0 ↔ if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) = 0 ) )
26 21 25 syl5ibrcom ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) → 1 = 0 ) )
27 26 necon3ad ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 1 ≠ 0 → ¬ ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) ) )
28 12 27 mpi ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ¬ ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) )
29 ax-1cn 1 ∈ ℂ
30 5 recnd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℂ )
31 subeq0 ( ( 1 ∈ ℂ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℂ ) → ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ↔ 1 = ( 𝑝 pCnt 𝐴 ) ) )
32 29 30 31 sylancr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ↔ 1 = ( 𝑝 pCnt 𝐴 ) ) )
33 8 recnd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℂ )
34 subeq0 ( ( 1 ∈ ℂ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℂ ) → ( ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ↔ 1 = ( 𝑝 pCnt 𝐵 ) ) )
35 29 33 34 sylancr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ↔ 1 = ( 𝑝 pCnt 𝐵 ) ) )
36 32 35 anbi12d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ↔ ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) ) )
37 28 36 mtbird ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ¬ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) )
38 37 adantr ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ¬ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) )
39 eqcom ( ( 1 + 1 ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) )
40 1re 1 ∈ ℝ
41 40 40 readdcli ( 1 + 1 ) ∈ ℝ
42 41 recni ( 1 + 1 ) ∈ ℂ
43 4 7 nn0addcld ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℕ0 )
44 43 nn0red ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ )
45 44 recnd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℂ )
46 subeq0 ( ( ( 1 + 1 ) ∈ ℂ ∧ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℂ ) → ( ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( 1 + 1 ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) )
47 42 45 46 sylancr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( 1 + 1 ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) )
48 47 39 bitrdi ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) ) )
49 9 recnd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 1 ∈ ℂ )
50 49 49 30 33 addsub4d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) )
51 50 eqeq1d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ) )
52 48 51 bitr3d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ) )
53 52 adantr ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ) )
54 subge0 ( ( 1 ∈ ℝ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) )
55 40 5 54 sylancr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) )
56 subge0 ( ( 1 ∈ ℝ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) → ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ↔ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) )
57 40 8 56 sylancr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ↔ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) )
58 55 57 anbi12d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) )
59 resubcl ( ( 1 ∈ ℝ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) → ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ )
60 40 5 59 sylancr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ )
61 resubcl ( ( 1 ∈ ℝ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) → ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ )
62 40 8 61 sylancr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ )
63 add20 ( ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ) ∧ ( ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) )
64 63 an4s ( ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) )
65 64 ex ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ) → ( ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) )
66 60 62 65 syl2anc ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) )
67 58 66 sylbird ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) )
68 67 imp ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) )
69 53 68 bitrd ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) )
70 39 69 syl5bb ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( 1 + 1 ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) )
71 70 necon3abid ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ↔ ¬ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) )
72 38 71 mpbird ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) )
73 72 ex ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) )
74 11 73 jcad ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ∧ ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) )
75 nnz ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ )
76 nnne0 ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 )
77 75 76 jca ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) )
78 3 77 syl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) )
79 nnz ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ )
80 nnne0 ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 )
81 79 80 jca ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) )
82 6 81 syl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) )
83 pcmul ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) )
84 2 78 82 83 syl3anc ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) )
85 84 breq1d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ 1 ) )
86 1nn0 1 ∈ ℕ0
87 nn0leltp1 ( ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ 1 ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) < ( 1 + 1 ) ) )
88 43 86 87 sylancl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ 1 ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) < ( 1 + 1 ) ) )
89 ltlen ( ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ∧ ( 1 + 1 ) ∈ ℝ ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) < ( 1 + 1 ) ↔ ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ∧ ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) )
90 44 41 89 sylancl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) < ( 1 + 1 ) ↔ ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ∧ ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) )
91 85 88 90 3bitrd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ↔ ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ∧ ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) )
92 74 91 sylibrd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) )
93 92 ralimdva ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ∀ 𝑝 ∈ ℙ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) )
94 1 93 syl5bir ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) )
95 issqf ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) )
96 issqf ( 𝐵 ∈ ℕ → ( ( μ ‘ 𝐵 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) )
97 95 96 bi2anan9 ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) )
98 97 3adant3 ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) )
99 nnmulcl ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) ∈ ℕ )
100 99 3adant3 ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( 𝐴 · 𝐵 ) ∈ ℕ )
101 issqf ( ( 𝐴 · 𝐵 ) ∈ ℕ → ( ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) )
102 100 101 syl ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) )
103 94 98 102 3imtr4d ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) )
104 103 imp ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 )