Metamath Proof Explorer


Theorem mumul

Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion mumul ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 simpl2 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → 𝐵 ∈ ℕ )
2 mucl ( 𝐵 ∈ ℕ → ( μ ‘ 𝐵 ) ∈ ℤ )
3 1 2 syl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ 𝐵 ) ∈ ℤ )
4 3 zcnd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ 𝐵 ) ∈ ℂ )
5 4 mul02d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( 0 · ( μ ‘ 𝐵 ) ) = 0 )
6 simpr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ 𝐴 ) = 0 )
7 6 oveq1d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( 0 · ( μ ‘ 𝐵 ) ) )
8 mumullem1 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 )
9 8 3adantl3 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 )
10 5 7 9 3eqtr4rd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) )
11 simpl1 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → 𝐴 ∈ ℕ )
12 mucl ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) ∈ ℤ )
13 11 12 syl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ 𝐴 ) ∈ ℤ )
14 13 zcnd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ 𝐴 ) ∈ ℂ )
15 14 mul01d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( ( μ ‘ 𝐴 ) · 0 ) = 0 )
16 simpr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ 𝐵 ) = 0 )
17 16 oveq2d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · 0 ) )
18 nncn ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ )
19 nncn ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ )
20 mulcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
21 18 19 20 syl2an ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
22 21 fveq2d ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( μ ‘ ( 𝐵 · 𝐴 ) ) )
23 22 adantr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( μ ‘ ( 𝐵 · 𝐴 ) ) )
24 mumullem1 ( ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐵 · 𝐴 ) ) = 0 )
25 24 ancom1s ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐵 · 𝐴 ) ) = 0 )
26 23 25 eqtrd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 )
27 26 3adantl3 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 )
28 15 17 27 3eqtr4rd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) )
29 simpl1 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐴 ∈ ℕ )
30 simpl2 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐵 ∈ ℕ )
31 29 30 nnmulcld ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℕ )
32 mumullem2 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 )
33 muval2 ( ( ( 𝐴 · 𝐵 ) ∈ ℕ ∧ ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) )
34 31 32 33 syl2anc ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) )
35 neg1cn - 1 ∈ ℂ
36 35 a1i ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → - 1 ∈ ℂ )
37 fzfi ( 1 ... 𝐵 ) ∈ Fin
38 prmssnn ℙ ⊆ ℕ
39 rabss2 ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝𝐵 } )
40 38 39 ax-mp { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝𝐵 }
41 dvdsssfz1 ( 𝐵 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝𝐵 } ⊆ ( 1 ... 𝐵 ) )
42 30 41 syl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℕ ∣ 𝑝𝐵 } ⊆ ( 1 ... 𝐵 ) )
43 40 42 sstrid ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ⊆ ( 1 ... 𝐵 ) )
44 ssfi ( ( ( 1 ... 𝐵 ) ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ⊆ ( 1 ... 𝐵 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ∈ Fin )
45 37 43 44 sylancr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ∈ Fin )
46 hashcl ( { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ∈ ℕ0 )
47 45 46 syl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ∈ ℕ0 )
48 fzfi ( 1 ... 𝐴 ) ∈ Fin
49 rabss2 ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝𝐴 } )
50 38 49 ax-mp { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝𝐴 }
51 dvdsssfz1 ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) )
52 29 51 syl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℕ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) )
53 50 52 sstrid ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) )
54 ssfi ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∈ Fin )
55 48 53 54 sylancr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∈ Fin )
56 hashcl ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ∈ ℕ0 )
57 55 56 syl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ∈ ℕ0 )
58 36 47 57 expaddd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( - 1 ↑ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) ) )
59 simpr ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ )
60 simpl1 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ )
61 60 nnzd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ )
62 61 adantlr ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ )
63 simpl2 ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℕ )
64 63 nnzd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ )
65 64 adantlr ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ )
66 euclemma ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑝 ∥ ( 𝐴 · 𝐵 ) ↔ ( 𝑝𝐴𝑝𝐵 ) ) )
67 59 62 65 66 syl3anc ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 · 𝐵 ) ↔ ( 𝑝𝐴𝑝𝐵 ) ) )
68 67 rabbidva ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } = { 𝑝 ∈ ℙ ∣ ( 𝑝𝐴𝑝𝐵 ) } )
69 unrab ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝𝐴𝑝𝐵 ) }
70 68 69 eqtr4di ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } = ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) )
71 70 fveq2d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) = ( ♯ ‘ ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) )
72 inrab ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∩ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝𝐴𝑝𝐵 ) }
73 nprmdvds1 ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 )
74 73 adantl ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ 1 )
75 prmz ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ )
76 75 adantl ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ )
77 dvdsgcd ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝𝐴𝑝𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) )
78 76 62 65 77 syl3anc ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝𝐴𝑝𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) )
79 simpll3 ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) = 1 )
80 79 breq2d ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ↔ 𝑝 ∥ 1 ) )
81 78 80 sylibd ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝𝐴𝑝𝐵 ) → 𝑝 ∥ 1 ) )
82 74 81 mtod ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ¬ ( 𝑝𝐴𝑝𝐵 ) )
83 82 ralrimiva ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ∀ 𝑝 ∈ ℙ ¬ ( 𝑝𝐴𝑝𝐵 ) )
84 rabeq0 ( { 𝑝 ∈ ℙ ∣ ( 𝑝𝐴𝑝𝐵 ) } = ∅ ↔ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝𝐴𝑝𝐵 ) )
85 83 84 sylibr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ ( 𝑝𝐴𝑝𝐵 ) } = ∅ )
86 72 85 syl5eq ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∩ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) = ∅ )
87 hashun ( ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ∈ Fin ∧ ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∩ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) = ∅ ) → ( ♯ ‘ ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) = ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) )
88 55 45 86 87 syl3anc ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ ( { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) = ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) )
89 71 88 eqtrd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) = ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) )
90 89 oveq2d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) = ( - 1 ↑ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) ) )
91 simprl ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐴 ) ≠ 0 )
92 muval2 ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) )
93 29 91 92 syl2anc ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) )
94 simprr ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐵 ) ≠ 0 )
95 muval2 ( ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) → ( μ ‘ 𝐵 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) )
96 30 94 95 syl2anc ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐵 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) )
97 93 96 oveq12d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐴 } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝐵 } ) ) ) )
98 58 90 97 3eqtr4rd ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) )
99 34 98 eqtr4d ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) )
100 10 28 99 pm2.61da2ne ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) )