| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → 𝐵 ∈ ℕ ) |
| 2 |
|
mucl |
⊢ ( 𝐵 ∈ ℕ → ( μ ‘ 𝐵 ) ∈ ℤ ) |
| 3 |
1 2
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ 𝐵 ) ∈ ℤ ) |
| 4 |
3
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ 𝐵 ) ∈ ℂ ) |
| 5 |
4
|
mul02d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( 0 · ( μ ‘ 𝐵 ) ) = 0 ) |
| 6 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ 𝐴 ) = 0 ) |
| 7 |
6
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( 0 · ( μ ‘ 𝐵 ) ) ) |
| 8 |
|
mumullem1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |
| 9 |
8
|
3adantl3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |
| 10 |
5 7 9
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) ) |
| 11 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → 𝐴 ∈ ℕ ) |
| 12 |
|
mucl |
⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) ∈ ℤ ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ 𝐴 ) ∈ ℤ ) |
| 14 |
13
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ 𝐴 ) ∈ ℂ ) |
| 15 |
14
|
mul01d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( ( μ ‘ 𝐴 ) · 0 ) = 0 ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ 𝐵 ) = 0 ) |
| 17 |
16
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · 0 ) ) |
| 18 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
| 19 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
| 20 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 21 |
18 19 20
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 22 |
21
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( μ ‘ ( 𝐵 · 𝐴 ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( μ ‘ ( 𝐵 · 𝐴 ) ) ) |
| 24 |
|
mumullem1 |
⊢ ( ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐵 · 𝐴 ) ) = 0 ) |
| 25 |
24
|
ancom1s |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐵 · 𝐴 ) ) = 0 ) |
| 26 |
23 25
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |
| 27 |
26
|
3adantl3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |
| 28 |
15 17 27
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) ) |
| 29 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐴 ∈ ℕ ) |
| 30 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐵 ∈ ℕ ) |
| 31 |
29 30
|
nnmulcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℕ ) |
| 32 |
|
mumullem2 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) |
| 33 |
|
muval2 |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℕ ∧ ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) ) |
| 34 |
31 32 33
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) ) |
| 35 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 36 |
35
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → - 1 ∈ ℂ ) |
| 37 |
|
fzfi |
⊢ ( 1 ... 𝐵 ) ∈ Fin |
| 38 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
| 39 |
|
rabss2 |
⊢ ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) |
| 40 |
38 39
|
ax-mp |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } |
| 41 |
|
dvdsssfz1 |
⊢ ( 𝐵 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) |
| 42 |
30 41
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) |
| 43 |
40 42
|
sstrid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) |
| 44 |
|
ssfi |
⊢ ( ( ( 1 ... 𝐵 ) ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ∈ Fin ) |
| 45 |
37 43 44
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ∈ Fin ) |
| 46 |
|
hashcl |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ∈ ℕ0 ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ∈ ℕ0 ) |
| 48 |
|
fzfi |
⊢ ( 1 ... 𝐴 ) ∈ Fin |
| 49 |
|
rabss2 |
⊢ ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) |
| 50 |
38 49
|
ax-mp |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } |
| 51 |
|
dvdsssfz1 |
⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
| 52 |
29 51
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
| 53 |
50 52
|
sstrid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
| 54 |
|
ssfi |
⊢ ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |
| 55 |
48 53 54
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |
| 56 |
|
hashcl |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
| 57 |
55 56
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
| 58 |
36 47 57
|
expaddd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( - 1 ↑ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) ) |
| 59 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
| 60 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) |
| 61 |
60
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 62 |
61
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 63 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℕ ) |
| 64 |
63
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
| 65 |
64
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
| 66 |
|
euclemma |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑝 ∥ ( 𝐴 · 𝐵 ) ↔ ( 𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵 ) ) ) |
| 67 |
59 62 65 66
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 · 𝐵 ) ↔ ( 𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵 ) ) ) |
| 68 |
67
|
rabbidva |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } = { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵 ) } ) |
| 69 |
|
unrab |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵 ) } |
| 70 |
68 69
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } = ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) |
| 71 |
70
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) = ( ♯ ‘ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 72 |
|
inrab |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∩ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) } |
| 73 |
|
nprmdvds1 |
⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) |
| 74 |
73
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ 1 ) |
| 75 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 76 |
75
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 77 |
|
dvdsgcd |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) |
| 78 |
76 62 65 77
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) |
| 79 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) = 1 ) |
| 80 |
79
|
breq2d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ↔ 𝑝 ∥ 1 ) ) |
| 81 |
78 80
|
sylibd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ 1 ) ) |
| 82 |
74 81
|
mtod |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ¬ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) |
| 83 |
82
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) |
| 84 |
|
rabeq0 |
⊢ ( { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) } = ∅ ↔ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) |
| 85 |
83 84
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) } = ∅ ) |
| 86 |
72 85
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∩ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) = ∅ ) |
| 87 |
|
hashun |
⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ∈ Fin ∧ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∩ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) = ∅ ) → ( ♯ ‘ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) = ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 88 |
55 45 86 87
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) = ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 89 |
71 88
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) = ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 90 |
89
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) = ( - 1 ↑ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) ) |
| 91 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐴 ) ≠ 0 ) |
| 92 |
|
muval2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
| 93 |
29 91 92
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
| 94 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐵 ) ≠ 0 ) |
| 95 |
|
muval2 |
⊢ ( ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) → ( μ ‘ 𝐵 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 96 |
30 94 95
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐵 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 97 |
93 96
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) ) |
| 98 |
58 90 97
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) ) |
| 99 |
34 98
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) ) |
| 100 |
10 28 99
|
pm2.61da2ne |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) ) |