| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgnbgreunbgr.g |
|- G = ( 5 gPetersenGr 2 ) |
| 2 |
|
pgnbgreunbgr.v |
|- V = ( Vtx ` G ) |
| 3 |
|
pgnbgreunbgr.e |
|- E = ( Edg ` G ) |
| 4 |
|
pgnbgreunbgr.n |
|- N = ( G NeighbVtx X ) |
| 5 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 6 |
|
pglem |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 7 |
5 6
|
pm3.2i |
|- ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 8 |
|
c0ex |
|- 0 e. _V |
| 9 |
|
vex |
|- y e. _V |
| 10 |
8 9
|
op1st |
|- ( 1st ` <. 0 , y >. ) = 0 |
| 11 |
|
simpr |
|- ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ { <. 0 , y >. , <. 0 , b >. } e. E ) -> { <. 0 , y >. , <. 0 , b >. } e. E ) |
| 12 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 13 |
12 1 2 3
|
gpgvtxedg0 |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( 1st ` <. 0 , y >. ) = 0 /\ { <. 0 , y >. , <. 0 , b >. } e. E ) -> ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) |
| 14 |
7 10 11 13
|
mp3an12i |
|- ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ { <. 0 , y >. , <. 0 , b >. } e. E ) -> ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) |
| 15 |
14
|
ex |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 0 , y >. , <. 0 , b >. } e. E -> ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) ) |
| 16 |
|
vex |
|- b e. _V |
| 17 |
8 16
|
op1st |
|- ( 1st ` <. 0 , b >. ) = 0 |
| 18 |
12 1 2 3
|
gpgvtxedg0 |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( 1st ` <. 0 , b >. ) = 0 /\ { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) -> ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) |
| 19 |
7 17 18
|
mp3an12 |
|- ( { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E -> ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) |
| 20 |
|
1ex |
|- 1 e. _V |
| 21 |
|
ovex |
|- ( ( y - 2 ) mod 5 ) e. _V |
| 22 |
20 21
|
opth |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. <-> ( 1 = 0 /\ ( ( y - 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) ) ) |
| 23 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 24 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 25 |
23 24
|
mpi |
|- ( 1 = 0 -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 26 |
25
|
adantr |
|- ( ( 1 = 0 /\ ( ( y - 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) ) -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 27 |
22 26
|
sylbi |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 28 |
20 21
|
opth |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. <-> ( 1 = 1 /\ ( ( y - 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) ) ) |
| 29 |
8 16
|
op2nd |
|- ( 2nd ` <. 0 , b >. ) = b |
| 30 |
29
|
eqeq2i |
|- ( ( ( y - 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) <-> ( ( y - 2 ) mod 5 ) = b ) |
| 31 |
|
eqcom |
|- ( ( ( y - 2 ) mod 5 ) = b <-> b = ( ( y - 2 ) mod 5 ) ) |
| 32 |
30 31
|
bitri |
|- ( ( ( y - 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) <-> b = ( ( y - 2 ) mod 5 ) ) |
| 33 |
8 9
|
op2nd |
|- ( 2nd ` <. 0 , y >. ) = y |
| 34 |
33
|
oveq1i |
|- ( ( 2nd ` <. 0 , y >. ) + 1 ) = ( y + 1 ) |
| 35 |
34
|
oveq1i |
|- ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) = ( ( y + 1 ) mod 5 ) |
| 36 |
35
|
opeq2i |
|- <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. = <. 0 , ( ( y + 1 ) mod 5 ) >. |
| 37 |
36
|
eqeq2i |
|- ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. <-> <. 0 , b >. = <. 0 , ( ( y + 1 ) mod 5 ) >. ) |
| 38 |
8 16
|
opth |
|- ( <. 0 , b >. = <. 0 , ( ( y + 1 ) mod 5 ) >. <-> ( 0 = 0 /\ b = ( ( y + 1 ) mod 5 ) ) ) |
| 39 |
37 38
|
bitri |
|- ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. <-> ( 0 = 0 /\ b = ( ( y + 1 ) mod 5 ) ) ) |
| 40 |
|
eqeq1 |
|- ( b = ( ( y + 1 ) mod 5 ) -> ( b = ( ( y - 2 ) mod 5 ) <-> ( ( y + 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) ) ) |
| 41 |
40
|
adantr |
|- ( ( b = ( ( y + 1 ) mod 5 ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( b = ( ( y - 2 ) mod 5 ) <-> ( ( y + 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) ) ) |
| 42 |
|
eqcom |
|- ( ( ( y + 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) <-> ( ( y - 2 ) mod 5 ) = ( ( y + 1 ) mod 5 ) ) |
| 43 |
42
|
a1i |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y + 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) <-> ( ( y - 2 ) mod 5 ) = ( ( y + 1 ) mod 5 ) ) ) |
| 44 |
|
elfzoelz |
|- ( y e. ( 0 ..^ 5 ) -> y e. ZZ ) |
| 45 |
|
2z |
|- 2 e. ZZ |
| 46 |
45
|
a1i |
|- ( y e. ( 0 ..^ 5 ) -> 2 e. ZZ ) |
| 47 |
44 46
|
zsubcld |
|- ( y e. ( 0 ..^ 5 ) -> ( y - 2 ) e. ZZ ) |
| 48 |
44
|
peano2zd |
|- ( y e. ( 0 ..^ 5 ) -> ( y + 1 ) e. ZZ ) |
| 49 |
|
5nn |
|- 5 e. NN |
| 50 |
49
|
a1i |
|- ( y e. ( 0 ..^ 5 ) -> 5 e. NN ) |
| 51 |
|
difmod0 |
|- ( ( ( y - 2 ) e. ZZ /\ ( y + 1 ) e. ZZ /\ 5 e. NN ) -> ( ( ( ( y - 2 ) - ( y + 1 ) ) mod 5 ) = 0 <-> ( ( y - 2 ) mod 5 ) = ( ( y + 1 ) mod 5 ) ) ) |
| 52 |
47 48 50 51
|
syl3anc |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( ( y - 2 ) - ( y + 1 ) ) mod 5 ) = 0 <-> ( ( y - 2 ) mod 5 ) = ( ( y + 1 ) mod 5 ) ) ) |
| 53 |
44
|
zcnd |
|- ( y e. ( 0 ..^ 5 ) -> y e. CC ) |
| 54 |
|
2cnd |
|- ( y e. ( 0 ..^ 5 ) -> 2 e. CC ) |
| 55 |
|
1cnd |
|- ( y e. ( 0 ..^ 5 ) -> 1 e. CC ) |
| 56 |
53 54 53 55
|
subsubadd23 |
|- ( y e. ( 0 ..^ 5 ) -> ( ( y - 2 ) - ( y + 1 ) ) = ( ( y - y ) - ( 2 + 1 ) ) ) |
| 57 |
53
|
subidd |
|- ( y e. ( 0 ..^ 5 ) -> ( y - y ) = 0 ) |
| 58 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 59 |
58
|
a1i |
|- ( y e. ( 0 ..^ 5 ) -> ( 2 + 1 ) = 3 ) |
| 60 |
57 59
|
oveq12d |
|- ( y e. ( 0 ..^ 5 ) -> ( ( y - y ) - ( 2 + 1 ) ) = ( 0 - 3 ) ) |
| 61 |
|
df-neg |
|- -u 3 = ( 0 - 3 ) |
| 62 |
60 61
|
eqtr4di |
|- ( y e. ( 0 ..^ 5 ) -> ( ( y - y ) - ( 2 + 1 ) ) = -u 3 ) |
| 63 |
56 62
|
eqtrd |
|- ( y e. ( 0 ..^ 5 ) -> ( ( y - 2 ) - ( y + 1 ) ) = -u 3 ) |
| 64 |
63
|
oveq1d |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y - 2 ) - ( y + 1 ) ) mod 5 ) = ( -u 3 mod 5 ) ) |
| 65 |
64
|
eqeq1d |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( ( y - 2 ) - ( y + 1 ) ) mod 5 ) = 0 <-> ( -u 3 mod 5 ) = 0 ) ) |
| 66 |
43 52 65
|
3bitr2d |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y + 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) <-> ( -u 3 mod 5 ) = 0 ) ) |
| 67 |
|
3re |
|- 3 e. RR |
| 68 |
|
5rp |
|- 5 e. RR+ |
| 69 |
|
negmod0 |
|- ( ( 3 e. RR /\ 5 e. RR+ ) -> ( ( 3 mod 5 ) = 0 <-> ( -u 3 mod 5 ) = 0 ) ) |
| 70 |
67 68 69
|
mp2an |
|- ( ( 3 mod 5 ) = 0 <-> ( -u 3 mod 5 ) = 0 ) |
| 71 |
|
0re |
|- 0 e. RR |
| 72 |
|
3pos |
|- 0 < 3 |
| 73 |
71 67 72
|
ltleii |
|- 0 <_ 3 |
| 74 |
|
3lt5 |
|- 3 < 5 |
| 75 |
|
modid |
|- ( ( ( 3 e. RR /\ 5 e. RR+ ) /\ ( 0 <_ 3 /\ 3 < 5 ) ) -> ( 3 mod 5 ) = 3 ) |
| 76 |
67 68 73 74 75
|
mp4an |
|- ( 3 mod 5 ) = 3 |
| 77 |
76
|
eqeq1i |
|- ( ( 3 mod 5 ) = 0 <-> 3 = 0 ) |
| 78 |
70 77
|
bitr3i |
|- ( ( -u 3 mod 5 ) = 0 <-> 3 = 0 ) |
| 79 |
|
3ne0 |
|- 3 =/= 0 |
| 80 |
|
eqneqall |
|- ( 3 = 0 -> ( 3 =/= 0 -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 81 |
79 80
|
mpi |
|- ( 3 = 0 -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) |
| 82 |
78 81
|
sylbi |
|- ( ( -u 3 mod 5 ) = 0 -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) |
| 83 |
66 82
|
biimtrdi |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y + 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 84 |
83
|
ad2antll |
|- ( ( b = ( ( y + 1 ) mod 5 ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( ( y + 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 85 |
41 84
|
sylbid |
|- ( ( b = ( ( y + 1 ) mod 5 ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 86 |
85
|
ex |
|- ( b = ( ( y + 1 ) mod 5 ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 87 |
39 86
|
simplbiim |
|- ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 88 |
8 16
|
opth |
|- ( <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. <-> ( 0 = 1 /\ b = ( 2nd ` <. 0 , y >. ) ) ) |
| 89 |
|
0ne1 |
|- 0 =/= 1 |
| 90 |
|
eqneqall |
|- ( 0 = 1 -> ( 0 =/= 1 -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) ) |
| 91 |
89 90
|
mpi |
|- ( 0 = 1 -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 92 |
91
|
adantr |
|- ( ( 0 = 1 /\ b = ( 2nd ` <. 0 , y >. ) ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 93 |
88 92
|
sylbi |
|- ( <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 94 |
33
|
oveq1i |
|- ( ( 2nd ` <. 0 , y >. ) - 1 ) = ( y - 1 ) |
| 95 |
94
|
oveq1i |
|- ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) = ( ( y - 1 ) mod 5 ) |
| 96 |
95
|
opeq2i |
|- <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. = <. 0 , ( ( y - 1 ) mod 5 ) >. |
| 97 |
96
|
eqeq2i |
|- ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. <-> <. 0 , b >. = <. 0 , ( ( y - 1 ) mod 5 ) >. ) |
| 98 |
8 16
|
opth |
|- ( <. 0 , b >. = <. 0 , ( ( y - 1 ) mod 5 ) >. <-> ( 0 = 0 /\ b = ( ( y - 1 ) mod 5 ) ) ) |
| 99 |
|
eqeq1 |
|- ( b = ( ( y - 1 ) mod 5 ) -> ( b = ( ( y - 2 ) mod 5 ) <-> ( ( y - 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) ) ) |
| 100 |
99
|
adantr |
|- ( ( b = ( ( y - 1 ) mod 5 ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( b = ( ( y - 2 ) mod 5 ) <-> ( ( y - 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) ) ) |
| 101 |
|
1zzd |
|- ( y e. ( 0 ..^ 5 ) -> 1 e. ZZ ) |
| 102 |
44 101
|
zsubcld |
|- ( y e. ( 0 ..^ 5 ) -> ( y - 1 ) e. ZZ ) |
| 103 |
|
difmod0 |
|- ( ( ( y - 1 ) e. ZZ /\ ( y - 2 ) e. ZZ /\ 5 e. NN ) -> ( ( ( ( y - 1 ) - ( y - 2 ) ) mod 5 ) = 0 <-> ( ( y - 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) ) ) |
| 104 |
103
|
bicomd |
|- ( ( ( y - 1 ) e. ZZ /\ ( y - 2 ) e. ZZ /\ 5 e. NN ) -> ( ( ( y - 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) <-> ( ( ( y - 1 ) - ( y - 2 ) ) mod 5 ) = 0 ) ) |
| 105 |
102 47 50 104
|
syl3anc |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y - 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) <-> ( ( ( y - 1 ) - ( y - 2 ) ) mod 5 ) = 0 ) ) |
| 106 |
53 55 54
|
nnncan1d |
|- ( y e. ( 0 ..^ 5 ) -> ( ( y - 1 ) - ( y - 2 ) ) = ( 2 - 1 ) ) |
| 107 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 108 |
106 107
|
eqtrdi |
|- ( y e. ( 0 ..^ 5 ) -> ( ( y - 1 ) - ( y - 2 ) ) = 1 ) |
| 109 |
108
|
oveq1d |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y - 1 ) - ( y - 2 ) ) mod 5 ) = ( 1 mod 5 ) ) |
| 110 |
109
|
eqeq1d |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( ( y - 1 ) - ( y - 2 ) ) mod 5 ) = 0 <-> ( 1 mod 5 ) = 0 ) ) |
| 111 |
|
1re |
|- 1 e. RR |
| 112 |
|
0le1 |
|- 0 <_ 1 |
| 113 |
|
1lt5 |
|- 1 < 5 |
| 114 |
|
modid |
|- ( ( ( 1 e. RR /\ 5 e. RR+ ) /\ ( 0 <_ 1 /\ 1 < 5 ) ) -> ( 1 mod 5 ) = 1 ) |
| 115 |
111 68 112 113 114
|
mp4an |
|- ( 1 mod 5 ) = 1 |
| 116 |
115
|
eqeq1i |
|- ( ( 1 mod 5 ) = 0 <-> 1 = 0 ) |
| 117 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 118 |
23 117
|
mpi |
|- ( 1 = 0 -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) |
| 119 |
116 118
|
sylbi |
|- ( ( 1 mod 5 ) = 0 -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) |
| 120 |
110 119
|
biimtrdi |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( ( y - 1 ) - ( y - 2 ) ) mod 5 ) = 0 -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 121 |
105 120
|
sylbid |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y - 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 122 |
121
|
ad2antll |
|- ( ( b = ( ( y - 1 ) mod 5 ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( ( y - 1 ) mod 5 ) = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 123 |
100 122
|
sylbid |
|- ( ( b = ( ( y - 1 ) mod 5 ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 124 |
123
|
ex |
|- ( b = ( ( y - 1 ) mod 5 ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 125 |
98 124
|
simplbiim |
|- ( <. 0 , b >. = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 126 |
97 125
|
sylbi |
|- ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 127 |
87 93 126
|
3jaoi |
|- ( ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( b = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 128 |
127
|
com13 |
|- ( b = ( ( y - 2 ) mod 5 ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 129 |
128
|
impd |
|- ( b = ( ( y - 2 ) mod 5 ) -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 130 |
32 129
|
sylbi |
|- ( ( ( y - 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 131 |
28 130
|
simplbiim |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 132 |
20 21
|
opth |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. <-> ( 1 = 0 /\ ( ( y - 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) ) ) |
| 133 |
25
|
adantr |
|- ( ( 1 = 0 /\ ( ( y - 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) ) -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 134 |
132 133
|
sylbi |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 135 |
27 131 134
|
3jaoi |
|- ( ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 136 |
19 135
|
syl |
|- ( { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 137 |
|
ax-1 |
|- ( -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 138 |
136 137
|
pm2.61i |
|- ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) |
| 139 |
138
|
ex |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) + 1 ) mod 5 ) >. \/ <. 0 , b >. = <. 1 , ( 2nd ` <. 0 , y >. ) >. \/ <. 0 , b >. = <. 0 , ( ( ( 2nd ` <. 0 , y >. ) - 1 ) mod 5 ) >. ) -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 140 |
15 139
|
syld |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 0 , y >. , <. 0 , b >. } e. E -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 141 |
140
|
adantl |
|- ( ( ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. /\ K = <. 0 , y >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( { <. 0 , y >. , <. 0 , b >. } e. E -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 142 |
|
preq1 |
|- ( K = <. 0 , y >. -> { K , <. 0 , b >. } = { <. 0 , y >. , <. 0 , b >. } ) |
| 143 |
142
|
eleq1d |
|- ( K = <. 0 , y >. -> ( { K , <. 0 , b >. } e. E <-> { <. 0 , y >. , <. 0 , b >. } e. E ) ) |
| 144 |
143
|
adantl |
|- ( ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. /\ K = <. 0 , y >. ) -> ( { K , <. 0 , b >. } e. E <-> { <. 0 , y >. , <. 0 , b >. } e. E ) ) |
| 145 |
|
preq2 |
|- ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. -> { <. 0 , b >. , L } = { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } ) |
| 146 |
145
|
eleq1d |
|- ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. -> ( { <. 0 , b >. , L } e. E <-> { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 147 |
146
|
notbid |
|- ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. -> ( -. { <. 0 , b >. , L } e. E <-> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 148 |
147
|
adantr |
|- ( ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. /\ K = <. 0 , y >. ) -> ( -. { <. 0 , b >. , L } e. E <-> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 149 |
144 148
|
imbi12d |
|- ( ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. /\ K = <. 0 , y >. ) -> ( ( { K , <. 0 , b >. } e. E -> -. { <. 0 , b >. , L } e. E ) <-> ( { <. 0 , y >. , <. 0 , b >. } e. E -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 150 |
149
|
adantr |
|- ( ( ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. /\ K = <. 0 , y >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E -> -. { <. 0 , b >. , L } e. E ) <-> ( { <. 0 , y >. , <. 0 , b >. } e. E -> -. { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) ) |
| 151 |
141 150
|
mpbird |
|- ( ( ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. /\ K = <. 0 , y >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( { K , <. 0 , b >. } e. E -> -. { <. 0 , b >. , L } e. E ) ) |
| 152 |
151
|
imp |
|- ( ( ( ( L = <. 1 , ( ( y - 2 ) mod 5 ) >. /\ K = <. 0 , y >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) /\ { K , <. 0 , b >. } e. E ) -> -. { <. 0 , b >. , L } e. E ) |