Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
2 |
|
dffn3 |
|- ( F Fn ( C +o D ) <-> F : ( C +o D ) --> ran F ) |
3 |
2
|
biimpi |
|- ( F Fn ( C +o D ) -> F : ( C +o D ) --> ran F ) |
4 |
3
|
adantr |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> F : ( C +o D ) --> ran F ) |
5 |
|
fndm |
|- ( F Fn ( C +o D ) -> dom F = ( C +o D ) ) |
6 |
5
|
adantr |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> dom F = ( C +o D ) ) |
7 |
|
oacl |
|- ( ( C e. On /\ D e. On ) -> ( C +o D ) e. On ) |
8 |
7
|
adantl |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( C +o D ) e. On ) |
9 |
6 8
|
eqeltrd |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> dom F e. On ) |
10 |
|
fnfun |
|- ( F Fn ( C +o D ) -> Fun F ) |
11 |
10
|
adantr |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> Fun F ) |
12 |
|
funrnex |
|- ( dom F e. On -> ( Fun F -> ran F e. _V ) ) |
13 |
9 11 12
|
sylc |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ran F e. _V ) |
14 |
13 8
|
elmapd |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( F e. ( ran F ^m ( C +o D ) ) <-> F : ( C +o D ) --> ran F ) ) |
15 |
4 14
|
mpbird |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> F e. ( ran F ^m ( C +o D ) ) ) |
16 |
|
oaword1 |
|- ( ( C e. On /\ D e. On ) -> C C_ ( C +o D ) ) |
17 |
16
|
adantl |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> C C_ ( C +o D ) ) |
18 |
|
elmapssres |
|- ( ( F e. ( ran F ^m ( C +o D ) ) /\ C C_ ( C +o D ) ) -> ( F |` C ) e. ( ran F ^m C ) ) |
19 |
15 17 18
|
syl2anc |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( F |` C ) e. ( ran F ^m C ) ) |
20 |
|
simpl |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> F Fn ( C +o D ) ) |
21 |
|
oaordi |
|- ( ( D e. On /\ C e. On ) -> ( d e. D -> ( C +o d ) e. ( C +o D ) ) ) |
22 |
21
|
ancoms |
|- ( ( C e. On /\ D e. On ) -> ( d e. D -> ( C +o d ) e. ( C +o D ) ) ) |
23 |
22
|
adantl |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( d e. D -> ( C +o d ) e. ( C +o D ) ) ) |
24 |
23
|
imp |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( C +o d ) e. ( C +o D ) ) |
25 |
|
fnfvelrn |
|- ( ( F Fn ( C +o D ) /\ ( C +o d ) e. ( C +o D ) ) -> ( F ` ( C +o d ) ) e. ran F ) |
26 |
20 24 25
|
syl2an2r |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ d e. D ) -> ( F ` ( C +o d ) ) e. ran F ) |
27 |
26
|
fmpttd |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( d e. D |-> ( F ` ( C +o d ) ) ) : D --> ran F ) |
28 |
|
simprr |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> D e. On ) |
29 |
13 28
|
elmapd |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( ( d e. D |-> ( F ` ( C +o d ) ) ) e. ( ran F ^m D ) <-> ( d e. D |-> ( F ` ( C +o d ) ) ) : D --> ran F ) ) |
30 |
27 29
|
mpbird |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( d e. D |-> ( F ` ( C +o d ) ) ) e. ( ran F ^m D ) ) |
31 |
20 17
|
fnssresd |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( F |` C ) Fn C ) |
32 |
|
fvex |
|- ( F ` ( C +o d ) ) e. _V |
33 |
|
eqid |
|- ( d e. D |-> ( F ` ( C +o d ) ) ) = ( d e. D |-> ( F ` ( C +o d ) ) ) |
34 |
32 33
|
fnmpti |
|- ( d e. D |-> ( F ` ( C +o d ) ) ) Fn D |
35 |
34
|
a1i |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( d e. D |-> ( F ` ( C +o d ) ) ) Fn D ) |
36 |
|
simpr |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( C e. On /\ D e. On ) ) |
37 |
1
|
tfsconcatun |
|- ( ( ( ( F |` C ) Fn C /\ ( d e. D |-> ( F ` ( C +o d ) ) ) Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ( F |` C ) .+ ( d e. D |-> ( F ` ( C +o d ) ) ) ) = ( ( F |` C ) u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) } ) ) |
38 |
31 35 36 37
|
syl21anc |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( ( F |` C ) .+ ( d e. D |-> ( F ` ( C +o d ) ) ) ) = ( ( F |` C ) u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) } ) ) |
39 |
|
oveq2 |
|- ( d = z -> ( C +o d ) = ( C +o z ) ) |
40 |
39
|
fveq2d |
|- ( d = z -> ( F ` ( C +o d ) ) = ( F ` ( C +o z ) ) ) |
41 |
|
fvex |
|- ( F ` ( C +o z ) ) e. _V |
42 |
40 33 41
|
fvmpt |
|- ( z e. D -> ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) = ( F ` ( C +o z ) ) ) |
43 |
42
|
ad2antlr |
|- ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) = ( F ` ( C +o z ) ) ) |
44 |
|
fveq2 |
|- ( x = ( C +o z ) -> ( F ` x ) = ( F ` ( C +o z ) ) ) |
45 |
44
|
adantl |
|- ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( F ` x ) = ( F ` ( C +o z ) ) ) |
46 |
43 45
|
eqtr4d |
|- ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) = ( F ` x ) ) |
47 |
46
|
eqeq2d |
|- ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) <-> y = ( F ` x ) ) ) |
48 |
47
|
biimpd |
|- ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ z e. D ) /\ x = ( C +o z ) ) -> ( y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) -> y = ( F ` x ) ) ) |
49 |
48
|
expimpd |
|- ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ z e. D ) -> ( ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) -> y = ( F ` x ) ) ) |
50 |
49
|
rexlimdva |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) -> y = ( F ` x ) ) ) |
51 |
|
simplr |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( C e. On /\ D e. On ) ) |
52 |
|
eloni |
|- ( ( C +o D ) e. On -> Ord ( C +o D ) ) |
53 |
7 52
|
syl |
|- ( ( C e. On /\ D e. On ) -> Ord ( C +o D ) ) |
54 |
|
eloni |
|- ( C e. On -> Ord C ) |
55 |
54
|
adantr |
|- ( ( C e. On /\ D e. On ) -> Ord C ) |
56 |
|
ordeldif |
|- ( ( Ord ( C +o D ) /\ Ord C ) -> ( x e. ( ( C +o D ) \ C ) <-> ( x e. ( C +o D ) /\ C C_ x ) ) ) |
57 |
53 55 56
|
syl2anc |
|- ( ( C e. On /\ D e. On ) -> ( x e. ( ( C +o D ) \ C ) <-> ( x e. ( C +o D ) /\ C C_ x ) ) ) |
58 |
57
|
adantl |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( x e. ( ( C +o D ) \ C ) <-> ( x e. ( C +o D ) /\ C C_ x ) ) ) |
59 |
58
|
biimpa |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( x e. ( C +o D ) /\ C C_ x ) ) |
60 |
59
|
ancomd |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( C C_ x /\ x e. ( C +o D ) ) ) |
61 |
51 60
|
jca |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( ( C e. On /\ D e. On ) /\ ( C C_ x /\ x e. ( C +o D ) ) ) ) |
62 |
61
|
adantr |
|- ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) -> ( ( C e. On /\ D e. On ) /\ ( C C_ x /\ x e. ( C +o D ) ) ) ) |
63 |
|
oawordex2 |
|- ( ( ( C e. On /\ D e. On ) /\ ( C C_ x /\ x e. ( C +o D ) ) ) -> E. z e. D ( C +o z ) = x ) |
64 |
62 63
|
syl |
|- ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) -> E. z e. D ( C +o z ) = x ) |
65 |
|
simpr |
|- ( ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) /\ z e. D ) /\ ( C +o z ) = x ) -> ( C +o z ) = x ) |
66 |
65
|
eqcomd |
|- ( ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) /\ z e. D ) /\ ( C +o z ) = x ) -> x = ( C +o z ) ) |
67 |
65
|
fveq2d |
|- ( ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) /\ z e. D ) /\ ( C +o z ) = x ) -> ( F ` ( C +o z ) ) = ( F ` x ) ) |
68 |
42
|
ad2antlr |
|- ( ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) /\ z e. D ) /\ ( C +o z ) = x ) -> ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) = ( F ` ( C +o z ) ) ) |
69 |
|
simpllr |
|- ( ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) /\ z e. D ) /\ ( C +o z ) = x ) -> y = ( F ` x ) ) |
70 |
67 68 69
|
3eqtr4rd |
|- ( ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) /\ z e. D ) /\ ( C +o z ) = x ) -> y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) |
71 |
66 70
|
jca |
|- ( ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) /\ z e. D ) /\ ( C +o z ) = x ) -> ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) |
72 |
71
|
ex |
|- ( ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) /\ z e. D ) -> ( ( C +o z ) = x -> ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) ) |
73 |
72
|
reximdva |
|- ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) -> ( E. z e. D ( C +o z ) = x -> E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) ) |
74 |
64 73
|
mpd |
|- ( ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) /\ y = ( F ` x ) ) -> E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) |
75 |
74
|
ex |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( y = ( F ` x ) -> E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) ) |
76 |
50 75
|
impbid |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) <-> y = ( F ` x ) ) ) |
77 |
|
eldifi |
|- ( x e. ( ( C +o D ) \ C ) -> x e. ( C +o D ) ) |
78 |
|
eqcom |
|- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
79 |
|
fnbrfvb |
|- ( ( F Fn ( C +o D ) /\ x e. ( C +o D ) ) -> ( ( F ` x ) = y <-> x F y ) ) |
80 |
78 79
|
bitrid |
|- ( ( F Fn ( C +o D ) /\ x e. ( C +o D ) ) -> ( y = ( F ` x ) <-> x F y ) ) |
81 |
20 77 80
|
syl2an |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( y = ( F ` x ) <-> x F y ) ) |
82 |
76 81
|
bitrd |
|- ( ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) <-> x F y ) ) |
83 |
82
|
pm5.32da |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) <-> ( x e. ( ( C +o D ) \ C ) /\ x F y ) ) ) |
84 |
83
|
opabbidv |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) } = { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ x F y ) } ) |
85 |
|
dfres2 |
|- ( F |` ( ( C +o D ) \ C ) ) = { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ x F y ) } |
86 |
84 85
|
eqtr4di |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) } = ( F |` ( ( C +o D ) \ C ) ) ) |
87 |
86
|
uneq2d |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( ( F |` C ) u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( ( d e. D |-> ( F ` ( C +o d ) ) ) ` z ) ) ) } ) = ( ( F |` C ) u. ( F |` ( ( C +o D ) \ C ) ) ) ) |
88 |
38 87
|
eqtrd |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( ( F |` C ) .+ ( d e. D |-> ( F ` ( C +o d ) ) ) ) = ( ( F |` C ) u. ( F |` ( ( C +o D ) \ C ) ) ) ) |
89 |
|
resundi |
|- ( F |` ( C u. ( ( C +o D ) \ C ) ) ) = ( ( F |` C ) u. ( F |` ( ( C +o D ) \ C ) ) ) |
90 |
89
|
a1i |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( F |` ( C u. ( ( C +o D ) \ C ) ) ) = ( ( F |` C ) u. ( F |` ( ( C +o D ) \ C ) ) ) ) |
91 |
|
undif |
|- ( C C_ ( C +o D ) <-> ( C u. ( ( C +o D ) \ C ) ) = ( C +o D ) ) |
92 |
16 91
|
sylib |
|- ( ( C e. On /\ D e. On ) -> ( C u. ( ( C +o D ) \ C ) ) = ( C +o D ) ) |
93 |
92
|
adantl |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( C u. ( ( C +o D ) \ C ) ) = ( C +o D ) ) |
94 |
93
|
reseq2d |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( F |` ( C u. ( ( C +o D ) \ C ) ) ) = ( F |` ( C +o D ) ) ) |
95 |
|
fnresdm |
|- ( F Fn ( C +o D ) -> ( F |` ( C +o D ) ) = F ) |
96 |
95
|
adantr |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( F |` ( C +o D ) ) = F ) |
97 |
94 96
|
eqtrd |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( F |` ( C u. ( ( C +o D ) \ C ) ) ) = F ) |
98 |
88 90 97
|
3eqtr2d |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( ( F |` C ) .+ ( d e. D |-> ( F ` ( C +o d ) ) ) ) = F ) |
99 |
|
dmres |
|- dom ( F |` C ) = ( C i^i dom F ) |
100 |
17 6
|
sseqtrrd |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> C C_ dom F ) |
101 |
|
dfss2 |
|- ( C C_ dom F <-> ( C i^i dom F ) = C ) |
102 |
100 101
|
sylib |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> ( C i^i dom F ) = C ) |
103 |
99 102
|
eqtrid |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> dom ( F |` C ) = C ) |
104 |
32 33
|
dmmpti |
|- dom ( d e. D |-> ( F ` ( C +o d ) ) ) = D |
105 |
104
|
a1i |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> dom ( d e. D |-> ( F ` ( C +o d ) ) ) = D ) |
106 |
|
oveq1 |
|- ( u = ( F |` C ) -> ( u .+ v ) = ( ( F |` C ) .+ v ) ) |
107 |
106
|
eqeq1d |
|- ( u = ( F |` C ) -> ( ( u .+ v ) = F <-> ( ( F |` C ) .+ v ) = F ) ) |
108 |
|
dmeq |
|- ( u = ( F |` C ) -> dom u = dom ( F |` C ) ) |
109 |
108
|
eqeq1d |
|- ( u = ( F |` C ) -> ( dom u = C <-> dom ( F |` C ) = C ) ) |
110 |
107 109
|
3anbi12d |
|- ( u = ( F |` C ) -> ( ( ( u .+ v ) = F /\ dom u = C /\ dom v = D ) <-> ( ( ( F |` C ) .+ v ) = F /\ dom ( F |` C ) = C /\ dom v = D ) ) ) |
111 |
|
oveq2 |
|- ( v = ( d e. D |-> ( F ` ( C +o d ) ) ) -> ( ( F |` C ) .+ v ) = ( ( F |` C ) .+ ( d e. D |-> ( F ` ( C +o d ) ) ) ) ) |
112 |
111
|
eqeq1d |
|- ( v = ( d e. D |-> ( F ` ( C +o d ) ) ) -> ( ( ( F |` C ) .+ v ) = F <-> ( ( F |` C ) .+ ( d e. D |-> ( F ` ( C +o d ) ) ) ) = F ) ) |
113 |
|
dmeq |
|- ( v = ( d e. D |-> ( F ` ( C +o d ) ) ) -> dom v = dom ( d e. D |-> ( F ` ( C +o d ) ) ) ) |
114 |
113
|
eqeq1d |
|- ( v = ( d e. D |-> ( F ` ( C +o d ) ) ) -> ( dom v = D <-> dom ( d e. D |-> ( F ` ( C +o d ) ) ) = D ) ) |
115 |
112 114
|
3anbi13d |
|- ( v = ( d e. D |-> ( F ` ( C +o d ) ) ) -> ( ( ( ( F |` C ) .+ v ) = F /\ dom ( F |` C ) = C /\ dom v = D ) <-> ( ( ( F |` C ) .+ ( d e. D |-> ( F ` ( C +o d ) ) ) ) = F /\ dom ( F |` C ) = C /\ dom ( d e. D |-> ( F ` ( C +o d ) ) ) = D ) ) ) |
116 |
110 115
|
rspc2ev |
|- ( ( ( F |` C ) e. ( ran F ^m C ) /\ ( d e. D |-> ( F ` ( C +o d ) ) ) e. ( ran F ^m D ) /\ ( ( ( F |` C ) .+ ( d e. D |-> ( F ` ( C +o d ) ) ) ) = F /\ dom ( F |` C ) = C /\ dom ( d e. D |-> ( F ` ( C +o d ) ) ) = D ) ) -> E. u e. ( ran F ^m C ) E. v e. ( ran F ^m D ) ( ( u .+ v ) = F /\ dom u = C /\ dom v = D ) ) |
117 |
19 30 98 103 105 116
|
syl113anc |
|- ( ( F Fn ( C +o D ) /\ ( C e. On /\ D e. On ) ) -> E. u e. ( ran F ^m C ) E. v e. ( ran F ^m D ) ( ( u .+ v ) = F /\ dom u = C /\ dom v = D ) ) |