Metamath Proof Explorer


Theorem 0ome

Description: The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses 0ome.1 φXV
0ome.2 O=x𝒫X0
Assertion 0ome φOOutMeas

Proof

Step Hyp Ref Expression
1 0ome.1 φXV
2 0ome.2 O=x𝒫X0
3 eqid y𝒫X0=y𝒫X0
4 0e0iccpnf 00+∞
5 4 a1i y𝒫X00+∞
6 3 5 fmpti y𝒫X0:𝒫X0+∞
7 eqidd x=y0=0
8 7 cbvmptv x𝒫X0=y𝒫X0
9 2 8 eqtri O=y𝒫X0
10 9 feq1i O:domO0+∞y𝒫X0:domO0+∞
11 9 dmeqi domO=domy𝒫X0
12 0re 0
13 12 rgenw y𝒫X0
14 dmmptg y𝒫X0domy𝒫X0=𝒫X
15 13 14 ax-mp domy𝒫X0=𝒫X
16 11 15 eqtri domO=𝒫X
17 16 feq2i y𝒫X0:domO0+∞y𝒫X0:𝒫X0+∞
18 10 17 bitri O:domO0+∞y𝒫X0:𝒫X0+∞
19 6 18 mpbir O:domO0+∞
20 unipw 𝒫X=X
21 20 pweqi 𝒫𝒫X=𝒫X
22 21 eqcomi 𝒫X=𝒫𝒫X
23 16 eqcomi 𝒫X=domO
24 23 unieqi 𝒫X=domO
25 24 pweqi 𝒫𝒫X=𝒫domO
26 16 22 25 3eqtri domO=𝒫domO
27 19 26 pm3.2i O:domO0+∞domO=𝒫domO
28 0elpw 𝒫X
29 eqidd y=0=0
30 12 elexi 0V
31 29 9 30 fvmpt 𝒫XO=0
32 28 31 ax-mp O=0
33 27 32 pm3.2i O:domO0+∞domO=𝒫domOO=0
34 12 leidi 00
35 34 a1i y𝒫domOz𝒫y00
36 eqidd y=z0=0
37 elpwi z𝒫yzy
38 37 adantl y𝒫domOz𝒫yzy
39 id y𝒫domOy𝒫domO
40 22 25 eqtr2i 𝒫domO=𝒫X
41 40 a1i y𝒫domO𝒫domO=𝒫X
42 39 41 eleqtrd y𝒫domOy𝒫X
43 elpwi y𝒫XyX
44 42 43 syl y𝒫domOyX
45 44 adantr y𝒫domOz𝒫yyX
46 38 45 sstrd y𝒫domOz𝒫yzX
47 simpr y𝒫domOz𝒫yz𝒫y
48 elpwg z𝒫yz𝒫XzX
49 47 48 syl y𝒫domOz𝒫yz𝒫XzX
50 46 49 mpbird y𝒫domOz𝒫yz𝒫X
51 12 a1i y𝒫domOz𝒫y0
52 9 36 50 51 fvmptd3 y𝒫domOz𝒫yOz=0
53 9 fvmpt2 y𝒫X0Oy=0
54 42 12 53 sylancl y𝒫domOOy=0
55 54 adantr y𝒫domOz𝒫yOy=0
56 52 55 breq12d y𝒫domOz𝒫yOzOy00
57 35 56 mpbird y𝒫domOz𝒫yOzOy
58 57 ralrimiva y𝒫domOz𝒫yOzOy
59 58 rgen y𝒫domOz𝒫yOzOy
60 33 59 pm3.2i O:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOy
61 34 a1i y𝒫domO00
62 36 cbvmptv y𝒫X0=z𝒫X0
63 9 62 eqtri O=z𝒫X0
64 63 a1i y𝒫domOO=z𝒫X0
65 eqidd y𝒫domOz=y0=0
66 id y𝒫domOy𝒫domO
67 16 pweqi 𝒫domO=𝒫𝒫X
68 67 a1i y𝒫domO𝒫domO=𝒫𝒫X
69 66 68 eleqtrd y𝒫domOy𝒫𝒫X
70 elpwi y𝒫𝒫Xy𝒫X
71 69 70 syl y𝒫domOy𝒫X
72 sspwuni y𝒫XyX
73 71 72 sylib y𝒫domOyX
74 vuniex yV
75 74 a1i y𝒫domOyV
76 elpwg yVy𝒫XyX
77 75 76 syl y𝒫domOy𝒫XyX
78 73 77 mpbird y𝒫domOy𝒫X
79 12 a1i y𝒫domO0
80 64 65 78 79 fvmptd y𝒫domOOy=0
81 64 reseq1d y𝒫domOOy=z𝒫X0y
82 resmpt y𝒫Xz𝒫X0y=zy0
83 71 82 syl y𝒫domOz𝒫X0y=zy0
84 81 83 eqtrd y𝒫domOOy=zy0
85 84 fveq2d y𝒫domOsum^Oy=sum^zy0
86 nfv zy𝒫domO
87 86 66 sge0z y𝒫domOsum^zy0=0
88 85 87 eqtrd y𝒫domOsum^Oy=0
89 80 88 breq12d y𝒫domOOysum^Oy00
90 61 89 mpbird y𝒫domOOysum^Oy
91 90 a1d y𝒫domOyωOysum^Oy
92 91 rgen y𝒫domOyωOysum^Oy
93 60 92 pm3.2i O:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
94 93 a1i φO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
95 9 a1i φO=y𝒫X0
96 1 pwexd φ𝒫XV
97 mptexg 𝒫XVy𝒫X0V
98 96 97 syl φy𝒫X0V
99 95 98 eqeltrd φOV
100 isome OVOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
101 99 100 syl φOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
102 94 101 mpbird φOOutMeas