Metamath Proof Explorer


Theorem 2ffzoeq

Description: Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018)

Ref Expression
Assertion 2ffzoeq M0N0F:0..^MXP:0..^NYF=PM=Ni0..^MFi=Pi

Proof

Step Hyp Ref Expression
1 eqeq1 F=PF=P=
2 1 anbi1d F=PF=P:0..^NYP=P:0..^NY
3 f0bi P:YP=
4 ffn P:0..^NYPFn0..^N
5 ffn P:YPFn
6 fndmu PFn0..^NPFn0..^N=
7 0z 0
8 nn0z N0N
9 8 adantl M0N0N
10 fzon 0NN00..^N=
11 7 9 10 sylancr M0N0N00..^N=
12 nn0ge0 N00N
13 0red N00
14 nn0re N0N
15 13 14 letri3d N00=N0NN0
16 15 biimprd N00NN00=N
17 12 16 mpand N0N00=N
18 17 adantl M0N0N00=N
19 11 18 sylbird M0N00..^N=0=N
20 6 19 syl5com PFn0..^NPFnM0N00=N
21 20 ex PFn0..^NPFnM0N00=N
22 4 5 21 syl2imc P:YP:0..^NYM0N00=N
23 3 22 sylbir P=P:0..^NYM0N00=N
24 23 imp P=P:0..^NYM0N00=N
25 2 24 syl6bi F=PF=P:0..^NYM0N00=N
26 25 com3l F=P:0..^NYM0N0F=P0=N
27 26 a1i M=0F=P:0..^NYM0N0F=P0=N
28 oveq2 M=00..^M=0..^0
29 fzo0 0..^0=
30 28 29 eqtrdi M=00..^M=
31 30 feq2d M=0F:0..^MXF:X
32 f0bi F:XF=
33 31 32 bitrdi M=0F:0..^MXF=
34 33 anbi1d M=0F:0..^MXP:0..^NYF=P:0..^NY
35 eqeq1 M=0M=N0=N
36 35 imbi2d M=0F=PM=NF=P0=N
37 36 imbi2d M=0M0N0F=PM=NM0N0F=P0=N
38 27 34 37 3imtr4d M=0F:0..^MXP:0..^NYM0N0F=PM=N
39 38 com3l F:0..^MXP:0..^NYM0N0M=0F=PM=N
40 39 impcom M0N0F:0..^MXP:0..^NYM=0F=PM=N
41 40 impcom M=0M0N0F:0..^MXP:0..^NYF=PM=N
42 28 feq2d M=0F:0..^MXF:0..^0X
43 29 feq2i F:0..^0XF:X
44 43 32 bitri F:0..^0XF=
45 42 44 bitrdi M=0F:0..^MXF=
46 45 adantr M=0M=NF:0..^MXF=
47 eqeq1 M=NM=0N=0
48 47 biimpac M=0M=NN=0
49 oveq2 N=00..^N=0..^0
50 49 feq2d N=0P:0..^NYP:0..^0Y
51 29 feq2i P:0..^0YP:Y
52 51 3 bitri P:0..^0YP=
53 50 52 bitrdi N=0P:0..^NYP=
54 48 53 syl M=0M=NP:0..^NYP=
55 46 54 anbi12d M=0M=NF:0..^MXP:0..^NYF=P=
56 eqtr3 F=P=F=P
57 55 56 syl6bi M=0M=NF:0..^MXP:0..^NYF=P
58 57 com12 F:0..^MXP:0..^NYM=0M=NF=P
59 58 expd F:0..^MXP:0..^NYM=0M=NF=P
60 59 adantl M0N0F:0..^MXP:0..^NYM=0M=NF=P
61 60 impcom M=0M0N0F:0..^MXP:0..^NYM=NF=P
62 41 61 impbid M=0M0N0F:0..^MXP:0..^NYF=PM=N
63 ral0 iFi=Pi
64 30 raleqdv M=0i0..^MFi=PiiFi=Pi
65 63 64 mpbiri M=0i0..^MFi=Pi
66 65 biantrud M=0M=NM=Ni0..^MFi=Pi
67 66 adantr M=0M0N0F:0..^MXP:0..^NYM=NM=Ni0..^MFi=Pi
68 62 67 bitrd M=0M0N0F:0..^MXP:0..^NYF=PM=Ni0..^MFi=Pi
69 ffn F:0..^MXFFn0..^M
70 69 4 anim12i F:0..^MXP:0..^NYFFn0..^MPFn0..^N
71 70 adantl M0N0F:0..^MXP:0..^NYFFn0..^MPFn0..^N
72 71 adantl ¬M=0M0N0F:0..^MXP:0..^NYFFn0..^MPFn0..^N
73 eqfnfv2 FFn0..^MPFn0..^NF=P0..^M=0..^Ni0..^MFi=Pi
74 72 73 syl ¬M=0M0N0F:0..^MXP:0..^NYF=P0..^M=0..^Ni0..^MFi=Pi
75 df-ne M0¬M=0
76 elnnne0 MM0M0
77 0zd M0
78 nnz MM
79 nngt0 M0<M
80 77 78 79 3jca M0M0<M
81 80 adantr MN00M0<M
82 fzoopth 0M0<M0..^M=0..^N0=0M=N
83 81 82 syl MN00..^M=0..^N0=0M=N
84 simpr 0=0M=NM=N
85 83 84 syl6bi MN00..^M=0..^NM=N
86 85 anim1d MN00..^M=0..^Ni0..^MFi=PiM=Ni0..^MFi=Pi
87 oveq2 M=N0..^M=0..^N
88 87 anim1i M=Ni0..^MFi=Pi0..^M=0..^Ni0..^MFi=Pi
89 86 88 impbid1 MN00..^M=0..^Ni0..^MFi=PiM=Ni0..^MFi=Pi
90 89 ex MN00..^M=0..^Ni0..^MFi=PiM=Ni0..^MFi=Pi
91 76 90 sylbir M0M0N00..^M=0..^Ni0..^MFi=PiM=Ni0..^MFi=Pi
92 91 impancom M0N0M00..^M=0..^Ni0..^MFi=PiM=Ni0..^MFi=Pi
93 75 92 biimtrrid M0N0¬M=00..^M=0..^Ni0..^MFi=PiM=Ni0..^MFi=Pi
94 93 adantr M0N0F:0..^MXP:0..^NY¬M=00..^M=0..^Ni0..^MFi=PiM=Ni0..^MFi=Pi
95 94 impcom ¬M=0M0N0F:0..^MXP:0..^NY0..^M=0..^Ni0..^MFi=PiM=Ni0..^MFi=Pi
96 74 95 bitrd ¬M=0M0N0F:0..^MXP:0..^NYF=PM=Ni0..^MFi=Pi
97 68 96 pm2.61ian M0N0F:0..^MXP:0..^NYF=PM=Ni0..^MFi=Pi