Description: Lemma 3 for 2lgslem1 . (Contributed by AV, 19-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgslem1c | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn | |
|
2 | nnnn0 | |
|
3 | oddnn02np1 | |
|
4 | 1 2 3 | 3syl | |
5 | iftrue | |
|
6 | 5 | adantr | |
7 | 2nn | |
|
8 | nn0ledivnn | |
|
9 | 7 8 | mpan2 | |
10 | 9 | adantl | |
11 | 6 10 | eqbrtrd | |
12 | iffalse | |
|
13 | 12 | adantr | |
14 | nn0re | |
|
15 | peano2rem | |
|
16 | 15 | rehalfcld | |
17 | 14 16 | syl | |
18 | 14 | rehalfcld | |
19 | 14 | lem1d | |
20 | 14 15 | syl | |
21 | 2re | |
|
22 | 2pos | |
|
23 | 21 22 | pm3.2i | |
24 | 23 | a1i | |
25 | lediv1 | |
|
26 | 20 14 24 25 | syl3anc | |
27 | 19 26 | mpbid | |
28 | 17 18 14 27 9 | letrd | |
29 | 28 | adantl | |
30 | 13 29 | eqbrtrd | |
31 | 11 30 | pm2.61ian | |
32 | 31 | ad2antlr | |
33 | nn0z | |
|
34 | 33 | adantl | |
35 | eqcom | |
|
36 | 35 | biimpi | |
37 | flodddiv4 | |
|
38 | 34 36 37 | syl2an | |
39 | oveq1 | |
|
40 | 39 | eqcoms | |
41 | 40 | adantl | |
42 | 2nn0 | |
|
43 | 42 | a1i | |
44 | id | |
|
45 | 43 44 | nn0mulcld | |
46 | 45 | nn0cnd | |
47 | pncan1 | |
|
48 | 46 47 | syl | |
49 | 48 | ad2antlr | |
50 | 41 49 | eqtrd | |
51 | 50 | oveq1d | |
52 | nn0cn | |
|
53 | 2cnd | |
|
54 | 2ne0 | |
|
55 | 54 | a1i | |
56 | 52 53 55 | divcan3d | |
57 | 56 | ad2antlr | |
58 | 51 57 | eqtrd | |
59 | 32 38 58 | 3brtr4d | |
60 | 59 | rexlimdva2 | |
61 | 4 60 | sylbid | |
62 | 61 | imp | |