Metamath Proof Explorer


Theorem aaitgo

Description: The standard algebraic numbers AA are generated by IntgOver . (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion aaitgo 𝔸=IntgOver

Proof

Step Hyp Ref Expression
1 rabid aa|bPolyba=0coeffbdegb=1abPolyba=0coeffbdegb=1
2 qsscn
3 itgoval IntgOver=a|bPolyba=0coeffbdegb=1
4 2 3 ax-mp IntgOver=a|bPolyba=0coeffbdegb=1
5 4 eleq2i aIntgOveraa|bPolyba=0coeffbdegb=1
6 aacn a𝔸a
7 mpaacl a𝔸minPoly𝔸aPoly
8 mpaaroot a𝔸minPoly𝔸aa=0
9 mpaadgr a𝔸degminPoly𝔸a=deg𝔸a
10 9 fveq2d a𝔸coeffminPoly𝔸adegminPoly𝔸a=coeffminPoly𝔸adeg𝔸a
11 mpaamn a𝔸coeffminPoly𝔸adeg𝔸a=1
12 10 11 eqtrd a𝔸coeffminPoly𝔸adegminPoly𝔸a=1
13 fveq1 b=minPoly𝔸aba=minPoly𝔸aa
14 13 eqeq1d b=minPoly𝔸aba=0minPoly𝔸aa=0
15 fveq2 b=minPoly𝔸acoeffb=coeffminPoly𝔸a
16 fveq2 b=minPoly𝔸adegb=degminPoly𝔸a
17 15 16 fveq12d b=minPoly𝔸acoeffbdegb=coeffminPoly𝔸adegminPoly𝔸a
18 17 eqeq1d b=minPoly𝔸acoeffbdegb=1coeffminPoly𝔸adegminPoly𝔸a=1
19 14 18 anbi12d b=minPoly𝔸aba=0coeffbdegb=1minPoly𝔸aa=0coeffminPoly𝔸adegminPoly𝔸a=1
20 19 rspcev minPoly𝔸aPolyminPoly𝔸aa=0coeffminPoly𝔸adegminPoly𝔸a=1bPolyba=0coeffbdegb=1
21 7 8 12 20 syl12anc a𝔸bPolyba=0coeffbdegb=1
22 6 21 jca a𝔸abPolyba=0coeffbdegb=1
23 simpl bPolyba=0coeffbdegb=1bPoly
24 coe0 coeff0𝑝=0×0
25 24 fveq1i coeff0𝑝deg0𝑝=0×0deg0𝑝
26 dgr0 deg0𝑝=0
27 0nn0 00
28 26 27 eqeltri deg0𝑝0
29 c0ex 0V
30 29 fvconst2 deg0𝑝00×0deg0𝑝=0
31 28 30 ax-mp 0×0deg0𝑝=0
32 25 31 eqtri coeff0𝑝deg0𝑝=0
33 0ne1 01
34 32 33 eqnetri coeff0𝑝deg0𝑝1
35 fveq2 b=0𝑝coeffb=coeff0𝑝
36 fveq2 b=0𝑝degb=deg0𝑝
37 35 36 fveq12d b=0𝑝coeffbdegb=coeff0𝑝deg0𝑝
38 37 neeq1d b=0𝑝coeffbdegb1coeff0𝑝deg0𝑝1
39 34 38 mpbiri b=0𝑝coeffbdegb1
40 39 necon2i coeffbdegb=1b0𝑝
41 40 ad2antll bPolyba=0coeffbdegb=1b0𝑝
42 eldifsn bPoly0𝑝bPolyb0𝑝
43 23 41 42 sylanbrc bPolyba=0coeffbdegb=1bPoly0𝑝
44 simprl bPolyba=0coeffbdegb=1ba=0
45 43 44 jca bPolyba=0coeffbdegb=1bPoly0𝑝ba=0
46 45 reximi2 bPolyba=0coeffbdegb=1bPoly0𝑝ba=0
47 46 anim2i abPolyba=0coeffbdegb=1abPoly0𝑝ba=0
48 elqaa a𝔸abPoly0𝑝ba=0
49 47 48 sylibr abPolyba=0coeffbdegb=1a𝔸
50 22 49 impbii a𝔸abPolyba=0coeffbdegb=1
51 1 5 50 3bitr4ri a𝔸aIntgOver
52 51 eqriv 𝔸=IntgOver