Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.a |
|
2 |
|
aaliou3lem.b |
|
3 |
|
eqid |
|
4 |
|
nnz |
|
5 |
|
uzid |
|
6 |
4 5
|
syl |
|
7 |
1
|
aaliou3lem1 |
|
8 |
1 2
|
aaliou3lem2 |
|
9 |
|
0xr |
|
10 |
|
elioc2 |
|
11 |
9 7 10
|
sylancr |
|
12 |
8 11
|
mpbid |
|
13 |
12
|
simp1d |
|
14 |
|
halfcn |
|
15 |
14
|
a1i |
|
16 |
|
halfre |
|
17 |
|
halfgt0 |
|
18 |
16 17
|
elrpii |
|
19 |
|
rprege0 |
|
20 |
|
absid |
|
21 |
18 19 20
|
mp2b |
|
22 |
|
halflt1 |
|
23 |
21 22
|
eqbrtri |
|
24 |
23
|
a1i |
|
25 |
|
2rp |
|
26 |
|
nnnn0 |
|
27 |
26
|
faccld |
|
28 |
27
|
nnzd |
|
29 |
28
|
znegcld |
|
30 |
|
rpexpcl |
|
31 |
25 29 30
|
sylancr |
|
32 |
31
|
rpcnd |
|
33 |
4 15 24 32 1
|
geolim3 |
|
34 |
|
seqex |
|
35 |
|
ovex |
|
36 |
34 35
|
breldm |
|
37 |
33 36
|
syl |
|
38 |
12
|
simp2d |
|
39 |
13 38
|
elrpd |
|
40 |
39
|
rpge0d |
|
41 |
12
|
simp3d |
|
42 |
3 6 7 13 37 40 41
|
cvgcmp |
|
43 |
|
eqidd |
|
44 |
3 3 6 43 39 42
|
isumrpcl |
|
45 |
|
eqidd |
|
46 |
3 4 43 13 45 7 41 42 37
|
isumle |
|
47 |
7
|
recnd |
|
48 |
3 4 45 47 33
|
isumclim |
|
49 |
|
1mhlfehlf |
|
50 |
49
|
oveq2i |
|
51 |
|
2cn |
|
52 |
|
mulcl |
|
53 |
32 51 52
|
sylancl |
|
54 |
53
|
div1d |
|
55 |
|
1rp |
|
56 |
|
rpcnne0 |
|
57 |
55 56
|
ax-mp |
|
58 |
|
2cnne0 |
|
59 |
|
divdiv2 |
|
60 |
57 58 59
|
mp3an23 |
|
61 |
32 60
|
syl |
|
62 |
|
mulcom |
|
63 |
51 32 62
|
sylancr |
|
64 |
54 61 63
|
3eqtr4d |
|
65 |
50 64
|
eqtrid |
|
66 |
48 65
|
eqtrd |
|
67 |
46 66
|
breqtrd |
|
68 |
42 44 67
|
3jca |
|