Metamath Proof Explorer


Theorem aaliou3lem3

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.a G=cA2A!12cA
aaliou3lem.b F=a2a!
Assertion aaliou3lem3 AseqA+FdombAFb+bAFb22A!

Proof

Step Hyp Ref Expression
1 aaliou3lem.a G=cA2A!12cA
2 aaliou3lem.b F=a2a!
3 eqid A=A
4 nnz AA
5 uzid AAA
6 4 5 syl AAA
7 1 aaliou3lem1 AbAGb
8 1 2 aaliou3lem2 AbAFb0Gb
9 0xr 0*
10 elioc2 0*GbFb0GbFb0<FbFbGb
11 9 7 10 sylancr AbAFb0GbFb0<FbFbGb
12 8 11 mpbid AbAFb0<FbFbGb
13 12 simp1d AbAFb
14 halfcn 12
15 14 a1i A12
16 halfre 12
17 halfgt0 0<12
18 16 17 elrpii 12+
19 rprege0 12+12012
20 absid 1201212=12
21 18 19 20 mp2b 12=12
22 halflt1 12<1
23 21 22 eqbrtri 12<1
24 23 a1i A12<1
25 2rp 2+
26 nnnn0 AA0
27 26 faccld AA!
28 27 nnzd AA!
29 28 znegcld AA!
30 rpexpcl 2+A!2A!+
31 25 29 30 sylancr A2A!+
32 31 rpcnd A2A!
33 4 15 24 32 1 geolim3 AseqA+G2A!112
34 seqex seqA+GV
35 ovex 2A!112V
36 34 35 breldm seqA+G2A!112seqA+Gdom
37 33 36 syl AseqA+Gdom
38 12 simp2d AbA0<Fb
39 13 38 elrpd AbAFb+
40 39 rpge0d AbA0Fb
41 12 simp3d AbAFbGb
42 3 6 7 13 37 40 41 cvgcmp AseqA+Fdom
43 eqidd AbAFb=Fb
44 3 3 6 43 39 42 isumrpcl AbAFb+
45 eqidd AbAGb=Gb
46 3 4 43 13 45 7 41 42 37 isumle AbAFbbAGb
47 7 recnd AbAGb
48 3 4 45 47 33 isumclim AbAGb=2A!112
49 1mhlfehlf 112=12
50 49 oveq2i 2A!112=2A!12
51 2cn 2
52 mulcl 2A!22A!2
53 32 51 52 sylancl A2A!2
54 53 div1d A2A!21=2A!2
55 1rp 1+
56 rpcnne0 1+110
57 55 56 ax-mp 110
58 2cnne0 220
59 divdiv2 2A!1102202A!12=2A!21
60 57 58 59 mp3an23 2A!2A!12=2A!21
61 32 60 syl A2A!12=2A!21
62 mulcom 22A!22A!=2A!2
63 51 32 62 sylancr A22A!=2A!2
64 54 61 63 3eqtr4d A2A!12=22A!
65 50 64 eqtrid A2A!112=22A!
66 48 65 eqtrd AbAGb=22A!
67 46 66 breqtrd AbAFb22A!
68 42 44 67 3jca AseqA+FdombAFb+bAFb22A!