Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aaliou3lem.a | |
|
aaliou3lem.b | |
||
Assertion | aaliou3lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aaliou3lem.a | |
|
2 | aaliou3lem.b | |
|
3 | eqid | |
|
4 | nnz | |
|
5 | uzid | |
|
6 | 4 5 | syl | |
7 | 1 | aaliou3lem1 | |
8 | 1 2 | aaliou3lem2 | |
9 | 0xr | |
|
10 | elioc2 | |
|
11 | 9 7 10 | sylancr | |
12 | 8 11 | mpbid | |
13 | 12 | simp1d | |
14 | halfcn | |
|
15 | 14 | a1i | |
16 | halfre | |
|
17 | halfgt0 | |
|
18 | 16 17 | elrpii | |
19 | rprege0 | |
|
20 | absid | |
|
21 | 18 19 20 | mp2b | |
22 | halflt1 | |
|
23 | 21 22 | eqbrtri | |
24 | 23 | a1i | |
25 | 2rp | |
|
26 | nnnn0 | |
|
27 | 26 | faccld | |
28 | 27 | nnzd | |
29 | 28 | znegcld | |
30 | rpexpcl | |
|
31 | 25 29 30 | sylancr | |
32 | 31 | rpcnd | |
33 | 4 15 24 32 1 | geolim3 | |
34 | seqex | |
|
35 | ovex | |
|
36 | 34 35 | breldm | |
37 | 33 36 | syl | |
38 | 12 | simp2d | |
39 | 13 38 | elrpd | |
40 | 39 | rpge0d | |
41 | 12 | simp3d | |
42 | 3 6 7 13 37 40 41 | cvgcmp | |
43 | eqidd | |
|
44 | 3 3 6 43 39 42 | isumrpcl | |
45 | eqidd | |
|
46 | 3 4 43 13 45 7 41 42 37 | isumle | |
47 | 7 | recnd | |
48 | 3 4 45 47 33 | isumclim | |
49 | 1mhlfehlf | |
|
50 | 49 | oveq2i | |
51 | 2cn | |
|
52 | mulcl | |
|
53 | 32 51 52 | sylancl | |
54 | 53 | div1d | |
55 | 1rp | |
|
56 | rpcnne0 | |
|
57 | 55 56 | ax-mp | |
58 | 2cnne0 | |
|
59 | divdiv2 | |
|
60 | 57 58 59 | mp3an23 | |
61 | 32 60 | syl | |
62 | mulcom | |
|
63 | 51 32 62 | sylancr | |
64 | 54 61 63 | 3eqtr4d | |
65 | 50 64 | eqtrid | |
66 | 48 65 | eqtrd | |
67 | 46 66 | breqtrd | |
68 | 42 44 67 | 3jca | |