| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|
| 2 |
|
difss |
|
| 3 |
1
|
ackbij1lem11 |
|
| 4 |
2 3
|
mpan2 |
|
| 5 |
|
difss |
|
| 6 |
|
omsson |
|
| 7 |
5 6
|
sstri |
|
| 8 |
|
ominf |
|
| 9 |
|
elinel2 |
|
| 10 |
|
difinf |
|
| 11 |
8 9 10
|
sylancr |
|
| 12 |
|
0fi |
|
| 13 |
|
eleq1 |
|
| 14 |
12 13
|
mpbiri |
|
| 15 |
14
|
necon3bi |
|
| 16 |
11 15
|
syl |
|
| 17 |
|
onint |
|
| 18 |
7 16 17
|
sylancr |
|
| 19 |
18
|
eldifad |
|
| 20 |
|
ackbij1lem4 |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
ackbij1lem6 |
|
| 23 |
4 21 22
|
syl2anc |
|
| 24 |
18
|
eldifbd |
|
| 25 |
|
disjsn |
|
| 26 |
24 25
|
sylibr |
|
| 27 |
|
ssdisj |
|
| 28 |
2 26 27
|
sylancr |
|
| 29 |
1
|
ackbij1lem9 |
|
| 30 |
4 21 28 29
|
syl3anc |
|
| 31 |
1
|
ackbij1lem14 |
|
| 32 |
19 31
|
syl |
|
| 33 |
32
|
oveq2d |
|
| 34 |
1
|
ackbij1lem10 |
|
| 35 |
34
|
ffvelcdmi |
|
| 36 |
4 35
|
syl |
|
| 37 |
|
ackbij1lem3 |
|
| 38 |
19 37
|
syl |
|
| 39 |
34
|
ffvelcdmi |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
nnasuc |
|
| 42 |
36 40 41
|
syl2anc |
|
| 43 |
|
disjdifr |
|
| 44 |
43
|
a1i |
|
| 45 |
1
|
ackbij1lem9 |
|
| 46 |
4 38 44 45
|
syl3anc |
|
| 47 |
|
uncom |
|
| 48 |
|
onnmin |
|
| 49 |
7 48
|
mpan |
|
| 50 |
49
|
con2i |
|
| 51 |
50
|
adantl |
|
| 52 |
|
ordom |
|
| 53 |
|
ordelss |
|
| 54 |
52 19 53
|
sylancr |
|
| 55 |
54
|
sselda |
|
| 56 |
|
eldif |
|
| 57 |
56
|
simplbi2 |
|
| 58 |
57
|
orrd |
|
| 59 |
58
|
orcomd |
|
| 60 |
55 59
|
syl |
|
| 61 |
|
orel1 |
|
| 62 |
51 60 61
|
sylc |
|
| 63 |
62
|
ex |
|
| 64 |
63
|
ssrdv |
|
| 65 |
|
undif |
|
| 66 |
64 65
|
sylib |
|
| 67 |
47 66
|
eqtrid |
|
| 68 |
67
|
fveq2d |
|
| 69 |
46 68
|
eqtr3d |
|
| 70 |
|
suceq |
|
| 71 |
69 70
|
syl |
|
| 72 |
42 71
|
eqtrd |
|
| 73 |
30 33 72
|
3eqtrd |
|
| 74 |
|
fveqeq2 |
|
| 75 |
74
|
rspcev |
|
| 76 |
23 73 75
|
syl2anc |
|