Metamath Proof Explorer


Theorem acongrep

Description: Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion acongrep ANa0A2AaN2Aa- N

Proof

Step Hyp Ref Expression
1 2nn 2
2 simpl ANA
3 nnmulcl 2A2A
4 1 2 3 sylancr AN2A
5 simpr ANN
6 congrep 2ANb02A12AbN
7 4 5 6 syl2anc ANb02A12AbN
8 elfzelz b02A1b
9 8 zred b02A1b
10 9 ad2antrl ANb02A12AbNb
11 nnre AA
12 11 ad2antrr ANb02A12AbNA
13 elfzle1 b02A10b
14 13 ad2antrl ANb02A12AbN0b
15 14 anim1i ANb02A12AbNbA0bbA
16 8 ad2antrl ANb02A12AbNb
17 0zd ANb02A12AbN0
18 nnz AA
19 18 ad2antrr ANb02A12AbNA
20 elfz b0Ab0A0bbA
21 16 17 19 20 syl3anc ANb02A12AbNb0A0bbA
22 21 adantr ANb02A12AbNbAb0A0bbA
23 15 22 mpbird ANb02A12AbNbAb0A
24 simplrr ANb02A12AbNbA2AbN
25 24 orcd ANb02A12AbNbA2AbN2Ab- N
26 id a=ba=b
27 eqidd a=bN=N
28 26 27 acongeq12d a=b2AaN2Aa- N2AbN2Ab- N
29 28 rspcev b0A2AbN2Ab- Na0A2AaN2Aa- N
30 23 25 29 syl2anc ANb02A12AbNbAa0A2AaN2Aa- N
31 simplll ANb02A12AbNAbA
32 simplrl ANb02A12AbNAbb02A1
33 simpr ANb02A12AbNAbAb
34 9 3ad2ant2 Ab02A1Abb
35 2re 2
36 remulcl 2A2A
37 35 11 36 sylancr A2A
38 37 3ad2ant1 Ab02A1Ab2A
39 0zd Ab02A1Ab0
40 2z 2
41 zmulcl 2A2A
42 40 18 41 sylancr A2A
43 42 3ad2ant1 Ab02A1Ab2A
44 simp2 Ab02A1Abb02A1
45 elfzm11 02Ab02A1b0bb<2A
46 45 biimpa 02Ab02A1b0bb<2A
47 39 43 44 46 syl21anc Ab02A1Abb0bb<2A
48 47 simp3d Ab02A1Abb<2A
49 34 38 48 ltled Ab02A1Abb2A
50 38 34 subge0d Ab02A1Ab02Abb2A
51 49 50 mpbird Ab02A1Ab02Ab
52 11 3ad2ant1 Ab02A1AbA
53 nncn AA
54 2times A2A=A+A
55 54 oveq1d A2AA=A+A-A
56 pncan2 AAA+A-A=A
57 56 anidms AA+A-A=A
58 55 57 eqtrd A2AA=A
59 53 58 syl A2AA=A
60 59 3ad2ant1 Ab02A1Ab2AA=A
61 simp3 Ab02A1AbAb
62 60 61 eqbrtrd Ab02A1Ab2AAb
63 38 52 34 62 subled Ab02A1Ab2AbA
64 51 63 jca Ab02A1Ab02Ab2AbA
65 31 32 33 64 syl3anc ANb02A12AbNAb02Ab2AbA
66 40 19 41 sylancr ANb02A12AbN2A
67 66 16 zsubcld ANb02A12AbN2Ab
68 elfz 2Ab0A2Ab0A02Ab2AbA
69 67 17 19 68 syl3anc ANb02A12AbN2Ab0A02Ab2AbA
70 69 adantr ANb02A12AbNAb2Ab0A02Ab2AbA
71 65 70 mpbird ANb02A12AbNAb2Ab0A
72 simplr ANb02A12AbNN
73 simprr ANb02A12AbN2AbN
74 congsym 2AbN2AbN2ANb
75 66 16 72 73 74 syl22anc ANb02A12AbN2ANb
76 72 16 zsubcld ANb02A12AbNNb
77 dvdsadd 2ANb2ANb2A2A+N-b
78 66 76 77 syl2anc ANb02A12AbN2ANb2A2A+N-b
79 75 78 mpbid ANb02A12AbN2A2A+N-b
80 67 zcnd ANb02A12AbN2Ab
81 zcn NN
82 81 ad2antlr ANb02A12AbNN
83 80 82 subnegd ANb02A12AbN2A-b-- N=2A-b+N
84 66 zcnd ANb02A12AbN2A
85 10 recnd ANb02A12AbNb
86 84 85 82 subadd23d ANb02A12AbN2A-b+N=2A+N-b
87 83 86 eqtrd ANb02A12AbN2A-b-- N=2A+N-b
88 79 87 breqtrrd ANb02A12AbN2A2A-b-- N
89 88 adantr ANb02A12AbNAb2A2A-b-- N
90 89 olcd ANb02A12AbNAb2A2A-b-N2A2A-b-- N
91 id a=2Aba=2Ab
92 eqidd a=2AbN=N
93 91 92 acongeq12d a=2Ab2AaN2Aa- N2A2A-b-N2A2A-b-- N
94 93 rspcev 2Ab0A2A2A-b-N2A2A-b-- Na0A2AaN2Aa- N
95 71 90 94 syl2anc ANb02A12AbNAba0A2AaN2Aa- N
96 10 12 30 95 lecasei ANb02A12AbNa0A2AaN2Aa- N
97 7 96 rexlimddv ANa0A2AaN2Aa- N