Metamath Proof Explorer


Theorem afvco2

Description: Value of a function composition, analogous to fvco2 . (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion afvco2 GFnAXAFG'''X=F'''G'''X

Proof

Step Hyp Ref Expression
1 fvco2 GFnAXAFGX=FGX
2 1 adantl GXdomFFunFGXGFnAXAFGX=FGX
3 simpll GXdomFFunFGXGFnAXAGXdomF
4 df-fn GFnAFunGdomG=A
5 simpll FunGdomG=AXAFunG
6 eleq2 A=domGXAXdomG
7 6 eqcoms domG=AXAXdomG
8 7 biimpd domG=AXAXdomG
9 8 adantl FunGdomG=AXAXdomG
10 9 imp FunGdomG=AXAXdomG
11 5 10 jca FunGdomG=AXAFunGXdomG
12 4 11 sylanb GFnAXAFunGXdomG
13 12 adantl GXdomFFunFGXGFnAXAFunGXdomG
14 dmfco FunGXdomGXdomFGGXdomF
15 13 14 syl GXdomFFunFGXGFnAXAXdomFGGXdomF
16 3 15 mpbird GXdomFFunFGXGFnAXAXdomFG
17 funcoressn GXdomFFunFGXGFnAXAFunFGX
18 df-dfat FGdefAtXXdomFGFunFGX
19 afvfundmfveq FGdefAtXFG'''X=FGX
20 18 19 sylbir XdomFGFunFGXFG'''X=FGX
21 16 17 20 syl2anc GXdomFFunFGXGFnAXAFG'''X=FGX
22 df-dfat FdefAtGXGXdomFFunFGX
23 afvfundmfveq FdefAtGXF'''GX=FGX
24 22 23 sylbir GXdomFFunFGXF'''GX=FGX
25 24 adantr GXdomFFunFGXGFnAXAF'''GX=FGX
26 2 21 25 3eqtr4d GXdomFFunFGXGFnAXAFG'''X=F'''GX
27 ianor ¬GXdomFFunFGX¬GXdomF¬FunFGX
28 14 funfni GFnAXAXdomFGGXdomF
29 28 bicomd GFnAXAGXdomFXdomFG
30 29 notbid GFnAXA¬GXdomF¬XdomFG
31 30 biimpd GFnAXA¬GXdomF¬XdomFG
32 ndmafv ¬XdomFGFG'''X=V
33 31 32 syl6com ¬GXdomFGFnAXAFG'''X=V
34 funressnfv XdomFGFunFGXGFnAXAFunFGX
35 34 ex XdomFGFunFGXGFnAXAFunFGX
36 afvnfundmuv ¬FGdefAtXFG'''X=V
37 18 36 sylnbir ¬XdomFGFunFGXFG'''X=V
38 35 37 nsyl4 ¬FG'''X=VGFnAXAFunFGX
39 38 com12 GFnAXA¬FG'''X=VFunFGX
40 39 con1d GFnAXA¬FunFGXFG'''X=V
41 40 com12 ¬FunFGXGFnAXAFG'''X=V
42 33 41 jaoi ¬GXdomF¬FunFGXGFnAXAFG'''X=V
43 27 42 sylbi ¬GXdomFFunFGXGFnAXAFG'''X=V
44 43 imp ¬GXdomFFunFGXGFnAXAFG'''X=V
45 afvnfundmuv ¬FdefAtGXF'''GX=V
46 22 45 sylnbir ¬GXdomFFunFGXF'''GX=V
47 46 eqcomd ¬GXdomFFunFGXV=F'''GX
48 47 adantr ¬GXdomFFunFGXGFnAXAV=F'''GX
49 44 48 eqtrd ¬GXdomFFunFGXGFnAXAFG'''X=F'''GX
50 26 49 pm2.61ian GFnAXAFG'''X=F'''GX
51 eqidd GFnAXAF=F
52 4 9 sylbi GFnAXAXdomG
53 52 imp GFnAXAXdomG
54 fnfun GFnAFunG
55 54 funresd GFnAFunGX
56 55 adantr GFnAXAFunGX
57 df-dfat GdefAtXXdomGFunGX
58 afvfundmfveq GdefAtXG'''X=GX
59 57 58 sylbir XdomGFunGXG'''X=GX
60 53 56 59 syl2anc GFnAXAG'''X=GX
61 60 eqcomd GFnAXAGX=G'''X
62 51 61 afveq12d GFnAXAF'''GX=F'''G'''X
63 50 62 eqtrd GFnAXAFG'''X=F'''G'''X