Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atanbndlem
Next ⟩
atanbnd
Metamath Proof Explorer
Ascii
Unicode
Theorem
atanbndlem
Description:
Lemma for
atanbnd
.
(Contributed by
Mario Carneiro
, 5-Apr-2015)
Ref
Expression
Assertion
atanbndlem
π
π
⊢
A
∈
ℝ
+
→
arctan
A
∈
−
π
2
π
2
Proof
Step
Hyp
Ref
Expression
1
rpre
⊢
A
∈
ℝ
+
→
A
∈
ℝ
2
atanrecl
⊢
A
∈
ℝ
→
arctan
A
∈
ℝ
3
1
2
syl
⊢
A
∈
ℝ
+
→
arctan
A
∈
ℝ
4
picn
π
⊢
π
∈
ℂ
5
2cn
⊢
2
∈
ℂ
6
2ne0
⊢
2
≠
0
7
divneg
π
π
π
⊢
π
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
−
π
2
=
−
π
2
8
4
5
6
7
mp3an
π
π
⊢
−
π
2
=
−
π
2
9
ax-1cn
⊢
1
∈
ℂ
10
ax-icn
⊢
i
∈
ℂ
11
1
recnd
⊢
A
∈
ℝ
+
→
A
∈
ℂ
12
mulcl
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
∈
ℂ
13
10
11
12
sylancr
⊢
A
∈
ℝ
+
→
i
A
∈
ℂ
14
addcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
+
i
A
∈
ℂ
15
9
13
14
sylancr
⊢
A
∈
ℝ
+
→
1
+
i
A
∈
ℂ
16
atanre
⊢
A
∈
ℝ
→
A
∈
dom
arctan
17
1
16
syl
⊢
A
∈
ℝ
+
→
A
∈
dom
arctan
18
atandm2
⊢
A
∈
dom
arctan
↔
A
∈
ℂ
∧
1
−
i
A
≠
0
∧
1
+
i
A
≠
0
19
17
18
sylib
⊢
A
∈
ℝ
+
→
A
∈
ℂ
∧
1
−
i
A
≠
0
∧
1
+
i
A
≠
0
20
19
simp3d
⊢
A
∈
ℝ
+
→
1
+
i
A
≠
0
21
15
20
logcld
⊢
A
∈
ℝ
+
→
log
1
+
i
A
∈
ℂ
22
subcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
−
i
A
∈
ℂ
23
9
13
22
sylancr
⊢
A
∈
ℝ
+
→
1
−
i
A
∈
ℂ
24
19
simp2d
⊢
A
∈
ℝ
+
→
1
−
i
A
≠
0
25
23
24
logcld
⊢
A
∈
ℝ
+
→
log
1
−
i
A
∈
ℂ
26
21
25
subcld
⊢
A
∈
ℝ
+
→
log
1
+
i
A
−
log
1
−
i
A
∈
ℂ
27
imre
⊢
log
1
+
i
A
−
log
1
−
i
A
∈
ℂ
→
ℑ
log
1
+
i
A
−
log
1
−
i
A
=
ℜ
−
i
log
1
+
i
A
−
log
1
−
i
A
28
26
27
syl
⊢
A
∈
ℝ
+
→
ℑ
log
1
+
i
A
−
log
1
−
i
A
=
ℜ
−
i
log
1
+
i
A
−
log
1
−
i
A
29
atanval
⊢
A
∈
dom
arctan
→
arctan
A
=
i
2
log
1
−
i
A
−
log
1
+
i
A
30
17
29
syl
⊢
A
∈
ℝ
+
→
arctan
A
=
i
2
log
1
−
i
A
−
log
1
+
i
A
31
30
oveq2d
⊢
A
∈
ℝ
+
→
2
arctan
A
=
2
i
2
log
1
−
i
A
−
log
1
+
i
A
32
10
5
6
divcan2i
⊢
2
i
2
=
i
33
32
oveq1i
⊢
2
i
2
log
1
−
i
A
−
log
1
+
i
A
=
i
log
1
−
i
A
−
log
1
+
i
A
34
2re
⊢
2
∈
ℝ
35
34
a1i
⊢
A
∈
ℝ
+
→
2
∈
ℝ
36
35
recnd
⊢
A
∈
ℝ
+
→
2
∈
ℂ
37
halfcl
⊢
i
∈
ℂ
→
i
2
∈
ℂ
38
10
37
mp1i
⊢
A
∈
ℝ
+
→
i
2
∈
ℂ
39
25
21
subcld
⊢
A
∈
ℝ
+
→
log
1
−
i
A
−
log
1
+
i
A
∈
ℂ
40
36
38
39
mulassd
⊢
A
∈
ℝ
+
→
2
i
2
log
1
−
i
A
−
log
1
+
i
A
=
2
i
2
log
1
−
i
A
−
log
1
+
i
A
41
33
40
eqtr3id
⊢
A
∈
ℝ
+
→
i
log
1
−
i
A
−
log
1
+
i
A
=
2
i
2
log
1
−
i
A
−
log
1
+
i
A
42
31
41
eqtr4d
⊢
A
∈
ℝ
+
→
2
arctan
A
=
i
log
1
−
i
A
−
log
1
+
i
A
43
21
25
negsubdi2d
⊢
A
∈
ℝ
+
→
−
log
1
+
i
A
−
log
1
−
i
A
=
log
1
−
i
A
−
log
1
+
i
A
44
43
oveq2d
⊢
A
∈
ℝ
+
→
i
−
log
1
+
i
A
−
log
1
−
i
A
=
i
log
1
−
i
A
−
log
1
+
i
A
45
42
44
eqtr4d
⊢
A
∈
ℝ
+
→
2
arctan
A
=
i
−
log
1
+
i
A
−
log
1
−
i
A
46
mulneg12
⊢
i
∈
ℂ
∧
log
1
+
i
A
−
log
1
−
i
A
∈
ℂ
→
−
i
log
1
+
i
A
−
log
1
−
i
A
=
i
−
log
1
+
i
A
−
log
1
−
i
A
47
10
26
46
sylancr
⊢
A
∈
ℝ
+
→
−
i
log
1
+
i
A
−
log
1
−
i
A
=
i
−
log
1
+
i
A
−
log
1
−
i
A
48
45
47
eqtr4d
⊢
A
∈
ℝ
+
→
2
arctan
A
=
−
i
log
1
+
i
A
−
log
1
−
i
A
49
48
fveq2d
⊢
A
∈
ℝ
+
→
ℜ
2
arctan
A
=
ℜ
−
i
log
1
+
i
A
−
log
1
−
i
A
50
remulcl
⊢
2
∈
ℝ
∧
arctan
A
∈
ℝ
→
2
arctan
A
∈
ℝ
51
34
3
50
sylancr
⊢
A
∈
ℝ
+
→
2
arctan
A
∈
ℝ
52
51
rered
⊢
A
∈
ℝ
+
→
ℜ
2
arctan
A
=
2
arctan
A
53
28
49
52
3eqtr2rd
⊢
A
∈
ℝ
+
→
2
arctan
A
=
ℑ
log
1
+
i
A
−
log
1
−
i
A
54
rpgt0
⊢
A
∈
ℝ
+
→
0
<
A
55
1
rered
⊢
A
∈
ℝ
+
→
ℜ
A
=
A
56
54
55
breqtrrd
⊢
A
∈
ℝ
+
→
0
<
ℜ
A
57
atanlogsublem
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
−
log
1
−
i
A
∈
−
π
π
58
17
56
57
syl2anc
π
π
⊢
A
∈
ℝ
+
→
ℑ
log
1
+
i
A
−
log
1
−
i
A
∈
−
π
π
59
53
58
eqeltrd
π
π
⊢
A
∈
ℝ
+
→
2
arctan
A
∈
−
π
π
60
eliooord
π
π
π
π
⊢
2
arctan
A
∈
−
π
π
→
−
π
<
2
arctan
A
∧
2
arctan
A
<
π
61
59
60
syl
π
π
⊢
A
∈
ℝ
+
→
−
π
<
2
arctan
A
∧
2
arctan
A
<
π
62
61
simpld
π
⊢
A
∈
ℝ
+
→
−
π
<
2
arctan
A
63
pire
π
⊢
π
∈
ℝ
64
63
renegcli
π
⊢
−
π
∈
ℝ
65
64
a1i
π
⊢
A
∈
ℝ
+
→
−
π
∈
ℝ
66
2pos
⊢
0
<
2
67
66
a1i
⊢
A
∈
ℝ
+
→
0
<
2
68
ltdivmul
π
π
π
⊢
−
π
∈
ℝ
∧
arctan
A
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
−
π
2
<
arctan
A
↔
−
π
<
2
arctan
A
69
65
3
35
67
68
syl112anc
π
π
⊢
A
∈
ℝ
+
→
−
π
2
<
arctan
A
↔
−
π
<
2
arctan
A
70
62
69
mpbird
π
⊢
A
∈
ℝ
+
→
−
π
2
<
arctan
A
71
8
70
eqbrtrid
π
⊢
A
∈
ℝ
+
→
−
π
2
<
arctan
A
72
61
simprd
π
⊢
A
∈
ℝ
+
→
2
arctan
A
<
π
73
63
a1i
π
⊢
A
∈
ℝ
+
→
π
∈
ℝ
74
ltmuldiv2
π
π
π
⊢
arctan
A
∈
ℝ
∧
π
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
2
arctan
A
<
π
↔
arctan
A
<
π
2
75
3
73
35
67
74
syl112anc
π
π
⊢
A
∈
ℝ
+
→
2
arctan
A
<
π
↔
arctan
A
<
π
2
76
72
75
mpbid
π
⊢
A
∈
ℝ
+
→
arctan
A
<
π
2
77
halfpire
π
⊢
π
2
∈
ℝ
78
77
renegcli
π
⊢
−
π
2
∈
ℝ
79
78
rexri
π
⊢
−
π
2
∈
ℝ
*
80
77
rexri
π
⊢
π
2
∈
ℝ
*
81
elioo2
π
π
π
π
π
π
⊢
−
π
2
∈
ℝ
*
∧
π
2
∈
ℝ
*
→
arctan
A
∈
−
π
2
π
2
↔
arctan
A
∈
ℝ
∧
−
π
2
<
arctan
A
∧
arctan
A
<
π
2
82
79
80
81
mp2an
π
π
π
π
⊢
arctan
A
∈
−
π
2
π
2
↔
arctan
A
∈
ℝ
∧
−
π
2
<
arctan
A
∧
arctan
A
<
π
2
83
3
71
76
82
syl3anbrc
π
π
⊢
A
∈
ℝ
+
→
arctan
A
∈
−
π
2
π
2