Metamath Proof Explorer


Theorem atanbndlem

Description: Lemma for atanbnd . (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion atanbndlem A+arctanAπ2π2

Proof

Step Hyp Ref Expression
1 rpre A+A
2 atanrecl AarctanA
3 1 2 syl A+arctanA
4 picn π
5 2cn 2
6 2ne0 20
7 divneg π220π2=π2
8 4 5 6 7 mp3an π2=π2
9 ax-1cn 1
10 ax-icn i
11 1 recnd A+A
12 mulcl iAiA
13 10 11 12 sylancr A+iA
14 addcl 1iA1+iA
15 9 13 14 sylancr A+1+iA
16 atanre AAdomarctan
17 1 16 syl A+Adomarctan
18 atandm2 AdomarctanA1iA01+iA0
19 17 18 sylib A+A1iA01+iA0
20 19 simp3d A+1+iA0
21 15 20 logcld A+log1+iA
22 subcl 1iA1iA
23 9 13 22 sylancr A+1iA
24 19 simp2d A+1iA0
25 23 24 logcld A+log1iA
26 21 25 subcld A+log1+iAlog1iA
27 imre log1+iAlog1iAlog1+iAlog1iA=ilog1+iAlog1iA
28 26 27 syl A+log1+iAlog1iA=ilog1+iAlog1iA
29 atanval AdomarctanarctanA=i2log1iAlog1+iA
30 17 29 syl A+arctanA=i2log1iAlog1+iA
31 30 oveq2d A+2arctanA=2i2log1iAlog1+iA
32 10 5 6 divcan2i 2i2=i
33 32 oveq1i 2i2log1iAlog1+iA=ilog1iAlog1+iA
34 2re 2
35 34 a1i A+2
36 35 recnd A+2
37 halfcl ii2
38 10 37 mp1i A+i2
39 25 21 subcld A+log1iAlog1+iA
40 36 38 39 mulassd A+2i2log1iAlog1+iA=2i2log1iAlog1+iA
41 33 40 eqtr3id A+ilog1iAlog1+iA=2i2log1iAlog1+iA
42 31 41 eqtr4d A+2arctanA=ilog1iAlog1+iA
43 21 25 negsubdi2d A+log1+iAlog1iA=log1iAlog1+iA
44 43 oveq2d A+ilog1+iAlog1iA=ilog1iAlog1+iA
45 42 44 eqtr4d A+2arctanA=ilog1+iAlog1iA
46 mulneg12 ilog1+iAlog1iAilog1+iAlog1iA=ilog1+iAlog1iA
47 10 26 46 sylancr A+ilog1+iAlog1iA=ilog1+iAlog1iA
48 45 47 eqtr4d A+2arctanA=ilog1+iAlog1iA
49 48 fveq2d A+2arctanA=ilog1+iAlog1iA
50 remulcl 2arctanA2arctanA
51 34 3 50 sylancr A+2arctanA
52 51 rered A+2arctanA=2arctanA
53 28 49 52 3eqtr2rd A+2arctanA=log1+iAlog1iA
54 rpgt0 A+0<A
55 1 rered A+A=A
56 54 55 breqtrrd A+0<A
57 atanlogsublem Adomarctan0<Alog1+iAlog1iAππ
58 17 56 57 syl2anc A+log1+iAlog1iAππ
59 53 58 eqeltrd A+2arctanAππ
60 eliooord 2arctanAπππ<2arctanA2arctanA<π
61 59 60 syl A+π<2arctanA2arctanA<π
62 61 simpld A+π<2arctanA
63 pire π
64 63 renegcli π
65 64 a1i A+π
66 2pos 0<2
67 66 a1i A+0<2
68 ltdivmul πarctanA20<2π2<arctanAπ<2arctanA
69 65 3 35 67 68 syl112anc A+π2<arctanAπ<2arctanA
70 62 69 mpbird A+π2<arctanA
71 8 70 eqbrtrid A+π2<arctanA
72 61 simprd A+2arctanA<π
73 63 a1i A+π
74 ltmuldiv2 arctanAπ20<22arctanA<πarctanA<π2
75 3 73 35 67 74 syl112anc A+2arctanA<πarctanA<π2
76 72 75 mpbid A+arctanA<π2
77 halfpire π2
78 77 renegcli π2
79 78 rexri π2*
80 77 rexri π2*
81 elioo2 π2*π2*arctanAπ2π2arctanAπ2<arctanAarctanA<π2
82 79 80 81 mp2an arctanAπ2π2arctanAπ2<arctanAarctanA<π2
83 3 71 76 82 syl3anbrc A+arctanAπ2π2