Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Cover relation, atoms, exchange axiom, and modular symmetry
Atoms, exchange and covering properties, atomicity
atcvatlem
Next ⟩
atcvati
Metamath Proof Explorer
Ascii
Unicode
Theorem
atcvatlem
Description:
Lemma for
atcvati
.
(Contributed by
NM
, 27-Jun-2004)
(New usage is discouraged.)
Ref
Expression
Hypothesis
atoml.1
⊢
A
∈
C
ℋ
Assertion
atcvatlem
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
A
≠
0
ℋ
∧
A
⊂
B
∨
ℋ
C
→
¬
B
⊆
A
→
A
∈
HAtoms
Proof
Step
Hyp
Ref
Expression
1
atoml.1
⊢
A
∈
C
ℋ
2
1
hatomici
⊢
A
≠
0
ℋ
→
∃
x
∈
HAtoms
x
⊆
A
3
nssne2
⊢
x
⊆
A
∧
¬
B
⊆
A
→
x
≠
B
4
3
adantrl
⊢
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
x
≠
B
5
atnemeq0
⊢
x
∈
HAtoms
∧
B
∈
HAtoms
→
x
≠
B
↔
x
∩
B
=
0
ℋ
6
4
5
imbitrid
⊢
x
∈
HAtoms
∧
B
∈
HAtoms
→
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
x
∩
B
=
0
ℋ
7
atelch
⊢
x
∈
HAtoms
→
x
∈
C
ℋ
8
cvp
⊢
x
∈
C
ℋ
∧
B
∈
HAtoms
→
x
∩
B
=
0
ℋ
↔
x
⋖
ℋ
x
∨
ℋ
B
9
atelch
⊢
B
∈
HAtoms
→
B
∈
C
ℋ
10
chjcom
⊢
x
∈
C
ℋ
∧
B
∈
C
ℋ
→
x
∨
ℋ
B
=
B
∨
ℋ
x
11
9
10
sylan2
⊢
x
∈
C
ℋ
∧
B
∈
HAtoms
→
x
∨
ℋ
B
=
B
∨
ℋ
x
12
11
breq2d
⊢
x
∈
C
ℋ
∧
B
∈
HAtoms
→
x
⋖
ℋ
x
∨
ℋ
B
↔
x
⋖
ℋ
B
∨
ℋ
x
13
8
12
bitrd
⊢
x
∈
C
ℋ
∧
B
∈
HAtoms
→
x
∩
B
=
0
ℋ
↔
x
⋖
ℋ
B
∨
ℋ
x
14
7
13
sylan
⊢
x
∈
HAtoms
∧
B
∈
HAtoms
→
x
∩
B
=
0
ℋ
↔
x
⋖
ℋ
B
∨
ℋ
x
15
6
14
sylibd
⊢
x
∈
HAtoms
∧
B
∈
HAtoms
→
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
16
15
ancoms
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
→
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
17
16
adantlr
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
→
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
18
17
imp
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
∧
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
19
chub1
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
→
B
⊆
B
∨
ℋ
x
20
9
7
19
syl2an
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
→
B
⊆
B
∨
ℋ
x
21
20
3adant3
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
→
B
⊆
B
∨
ℋ
x
22
21
adantr
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
⊆
B
∨
ℋ
x
23
pssss
⊢
A
⊂
B
∨
ℋ
C
→
A
⊆
B
∨
ℋ
C
24
sstr
⊢
x
⊆
A
∧
A
⊆
B
∨
ℋ
C
→
x
⊆
B
∨
ℋ
C
25
23
24
sylan2
⊢
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
x
⊆
B
∨
ℋ
C
26
25
adantlr
⊢
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
x
⊆
B
∨
ℋ
C
27
26
adantl
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
x
⊆
B
∨
ℋ
C
28
incom
⊢
B
∩
x
=
x
∩
B
29
3
5
imbitrid
⊢
x
∈
HAtoms
∧
B
∈
HAtoms
→
x
⊆
A
∧
¬
B
⊆
A
→
x
∩
B
=
0
ℋ
30
29
ancoms
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
→
x
⊆
A
∧
¬
B
⊆
A
→
x
∩
B
=
0
ℋ
31
30
3adant3
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
→
x
⊆
A
∧
¬
B
⊆
A
→
x
∩
B
=
0
ℋ
32
31
imp
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
→
x
∩
B
=
0
ℋ
33
28
32
eqtrid
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
→
B
∩
x
=
0
ℋ
34
33
adantrr
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
∩
x
=
0
ℋ
35
atexch
⊢
B
∈
C
ℋ
∧
x
∈
HAtoms
∧
C
∈
HAtoms
→
x
⊆
B
∨
ℋ
C
∧
B
∩
x
=
0
ℋ
→
C
⊆
B
∨
ℋ
x
36
9
35
syl3an1
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
→
x
⊆
B
∨
ℋ
C
∧
B
∩
x
=
0
ℋ
→
C
⊆
B
∨
ℋ
x
37
36
adantr
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
x
⊆
B
∨
ℋ
C
∧
B
∩
x
=
0
ℋ
→
C
⊆
B
∨
ℋ
x
38
27
34
37
mp2and
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
C
⊆
B
∨
ℋ
x
39
atelch
⊢
C
∈
HAtoms
→
C
∈
C
ℋ
40
simp1
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
→
B
∈
C
ℋ
41
simp3
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
→
C
∈
C
ℋ
42
chjcl
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
→
B
∨
ℋ
x
∈
C
ℋ
43
42
3adant3
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
→
B
∨
ℋ
x
∈
C
ℋ
44
40
41
43
3jca
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
→
B
∈
C
ℋ
∧
C
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
45
9
7
39
44
syl3an
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
→
B
∈
C
ℋ
∧
C
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
46
chlub
⊢
B
∈
C
ℋ
∧
C
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
→
B
⊆
B
∨
ℋ
x
∧
C
⊆
B
∨
ℋ
x
↔
B
∨
ℋ
C
⊆
B
∨
ℋ
x
47
45
46
syl
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
→
B
⊆
B
∨
ℋ
x
∧
C
⊆
B
∨
ℋ
x
↔
B
∨
ℋ
C
⊆
B
∨
ℋ
x
48
47
adantr
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
⊆
B
∨
ℋ
x
∧
C
⊆
B
∨
ℋ
x
↔
B
∨
ℋ
C
⊆
B
∨
ℋ
x
49
22
38
48
mpbi2and
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
∨
ℋ
C
⊆
B
∨
ℋ
x
50
chub1
⊢
B
∈
C
ℋ
∧
C
∈
C
ℋ
→
B
⊆
B
∨
ℋ
C
51
50
3adant2
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
→
B
⊆
B
∨
ℋ
C
52
51
26
anim12i
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
⊆
B
∨
ℋ
C
∧
x
⊆
B
∨
ℋ
C
53
chjcl
⊢
B
∈
C
ℋ
∧
C
∈
C
ℋ
→
B
∨
ℋ
C
∈
C
ℋ
54
53
3adant2
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
→
B
∨
ℋ
C
∈
C
ℋ
55
chlub
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
B
∨
ℋ
C
∈
C
ℋ
→
B
⊆
B
∨
ℋ
C
∧
x
⊆
B
∨
ℋ
C
↔
B
∨
ℋ
x
⊆
B
∨
ℋ
C
56
54
55
syld3an3
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
→
B
⊆
B
∨
ℋ
C
∧
x
⊆
B
∨
ℋ
C
↔
B
∨
ℋ
x
⊆
B
∨
ℋ
C
57
56
adantr
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
⊆
B
∨
ℋ
C
∧
x
⊆
B
∨
ℋ
C
↔
B
∨
ℋ
x
⊆
B
∨
ℋ
C
58
52
57
mpbid
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
∧
C
∈
C
ℋ
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
∨
ℋ
x
⊆
B
∨
ℋ
C
59
9
7
39
58
syl3anl
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
∨
ℋ
x
⊆
B
∨
ℋ
C
60
49
59
eqssd
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
∨
ℋ
C
=
B
∨
ℋ
x
61
60
anassrs
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
B
∨
ℋ
C
=
B
∨
ℋ
x
62
61
psseq2d
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
∧
A
⊂
B
∨
ℋ
C
→
A
⊂
B
∨
ℋ
C
↔
A
⊂
B
∨
ℋ
x
63
62
ex
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
→
A
⊂
B
∨
ℋ
C
→
A
⊂
B
∨
ℋ
C
↔
A
⊂
B
∨
ℋ
x
64
63
ibd
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
∧
x
⊆
A
∧
¬
B
⊆
A
→
A
⊂
B
∨
ℋ
C
→
A
⊂
B
∨
ℋ
x
65
64
exp32
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
→
x
⊆
A
→
¬
B
⊆
A
→
A
⊂
B
∨
ℋ
C
→
A
⊂
B
∨
ℋ
x
66
65
3expa
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
∧
C
∈
HAtoms
→
x
⊆
A
→
¬
B
⊆
A
→
A
⊂
B
∨
ℋ
C
→
A
⊂
B
∨
ℋ
x
67
66
an32s
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
→
x
⊆
A
→
¬
B
⊆
A
→
A
⊂
B
∨
ℋ
C
→
A
⊂
B
∨
ℋ
x
68
67
com34
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
→
x
⊆
A
→
A
⊂
B
∨
ℋ
C
→
¬
B
⊆
A
→
A
⊂
B
∨
ℋ
x
69
68
imp45
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
∧
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
A
⊂
B
∨
ℋ
x
70
simpr
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
→
x
∈
C
ℋ
71
70
42
jca
⊢
B
∈
C
ℋ
∧
x
∈
C
ℋ
→
x
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
72
9
7
71
syl2an
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
→
x
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
73
cvnbtwn3
⊢
x
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
∧
A
∈
C
ℋ
→
x
⋖
ℋ
B
∨
ℋ
x
→
x
⊆
A
∧
A
⊂
B
∨
ℋ
x
→
A
=
x
74
1
73
mp3an3
⊢
x
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
→
x
⋖
ℋ
B
∨
ℋ
x
→
x
⊆
A
∧
A
⊂
B
∨
ℋ
x
→
A
=
x
75
74
exp4a
⊢
x
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
→
x
⋖
ℋ
B
∨
ℋ
x
→
x
⊆
A
→
A
⊂
B
∨
ℋ
x
→
A
=
x
76
75
com23
⊢
x
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
→
x
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
→
A
⊂
B
∨
ℋ
x
→
A
=
x
77
76
imp4a
⊢
x
∈
C
ℋ
∧
B
∨
ℋ
x
∈
C
ℋ
→
x
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
∧
A
⊂
B
∨
ℋ
x
→
A
=
x
78
72
77
syl
⊢
B
∈
HAtoms
∧
x
∈
HAtoms
→
x
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
∧
A
⊂
B
∨
ℋ
x
→
A
=
x
79
78
adantlr
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
→
x
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
∧
A
⊂
B
∨
ℋ
x
→
A
=
x
80
79
imp
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
∧
x
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
∧
A
⊂
B
∨
ℋ
x
→
A
=
x
81
80
adantrr
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
∧
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
x
⋖
ℋ
B
∨
ℋ
x
∧
A
⊂
B
∨
ℋ
x
→
A
=
x
82
18
69
81
mp2and
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
∧
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
A
=
x
83
82
eleq1d
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
∧
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
A
∈
HAtoms
↔
x
∈
HAtoms
84
83
biimprcd
⊢
x
∈
HAtoms
→
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
∧
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
A
∈
HAtoms
85
84
exp4c
⊢
x
∈
HAtoms
→
B
∈
HAtoms
∧
C
∈
HAtoms
→
x
∈
HAtoms
→
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
A
∈
HAtoms
86
85
pm2.43b
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
→
x
∈
HAtoms
→
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
A
∈
HAtoms
87
86
imp
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
→
x
⊆
A
∧
A
⊂
B
∨
ℋ
C
∧
¬
B
⊆
A
→
A
∈
HAtoms
88
87
exp4d
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
x
∈
HAtoms
→
x
⊆
A
→
A
⊂
B
∨
ℋ
C
→
¬
B
⊆
A
→
A
∈
HAtoms
89
88
rexlimdva
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
→
∃
x
∈
HAtoms
x
⊆
A
→
A
⊂
B
∨
ℋ
C
→
¬
B
⊆
A
→
A
∈
HAtoms
90
2
89
syl5
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
→
A
≠
0
ℋ
→
A
⊂
B
∨
ℋ
C
→
¬
B
⊆
A
→
A
∈
HAtoms
91
90
imp32
⊢
B
∈
HAtoms
∧
C
∈
HAtoms
∧
A
≠
0
ℋ
∧
A
⊂
B
∨
ℋ
C
→
¬
B
⊆
A
→
A
∈
HAtoms