Metamath Proof Explorer


Theorem atcvatlem

Description: Lemma for atcvati . (Contributed by NM, 27-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 AC
Assertion atcvatlem BHAtomsCHAtomsA0ABC¬BAAHAtoms

Proof

Step Hyp Ref Expression
1 atoml.1 AC
2 1 hatomici A0xHAtomsxA
3 nssne2 xA¬BAxB
4 3 adantrl xAABC¬BAxB
5 atnemeq0 xHAtomsBHAtomsxBxB=0
6 4 5 imbitrid xHAtomsBHAtomsxAABC¬BAxB=0
7 atelch xHAtomsxC
8 cvp xCBHAtomsxB=0xxB
9 atelch BHAtomsBC
10 chjcom xCBCxB=Bx
11 9 10 sylan2 xCBHAtomsxB=Bx
12 11 breq2d xCBHAtomsxxBxBx
13 8 12 bitrd xCBHAtomsxB=0xBx
14 7 13 sylan xHAtomsBHAtomsxB=0xBx
15 6 14 sylibd xHAtomsBHAtomsxAABC¬BAxBx
16 15 ancoms BHAtomsxHAtomsxAABC¬BAxBx
17 16 adantlr BHAtomsCHAtomsxHAtomsxAABC¬BAxBx
18 17 imp BHAtomsCHAtomsxHAtomsxAABC¬BAxBx
19 chub1 BCxCBBx
20 9 7 19 syl2an BHAtomsxHAtomsBBx
21 20 3adant3 BHAtomsxHAtomsCHAtomsBBx
22 21 adantr BHAtomsxHAtomsCHAtomsxA¬BAABCBBx
23 pssss ABCABC
24 sstr xAABCxBC
25 23 24 sylan2 xAABCxBC
26 25 adantlr xA¬BAABCxBC
27 26 adantl BHAtomsxHAtomsCHAtomsxA¬BAABCxBC
28 incom Bx=xB
29 3 5 imbitrid xHAtomsBHAtomsxA¬BAxB=0
30 29 ancoms BHAtomsxHAtomsxA¬BAxB=0
31 30 3adant3 BHAtomsxHAtomsCHAtomsxA¬BAxB=0
32 31 imp BHAtomsxHAtomsCHAtomsxA¬BAxB=0
33 28 32 eqtrid BHAtomsxHAtomsCHAtomsxA¬BABx=0
34 33 adantrr BHAtomsxHAtomsCHAtomsxA¬BAABCBx=0
35 atexch BCxHAtomsCHAtomsxBCBx=0CBx
36 9 35 syl3an1 BHAtomsxHAtomsCHAtomsxBCBx=0CBx
37 36 adantr BHAtomsxHAtomsCHAtomsxA¬BAABCxBCBx=0CBx
38 27 34 37 mp2and BHAtomsxHAtomsCHAtomsxA¬BAABCCBx
39 atelch CHAtomsCC
40 simp1 BCxCCCBC
41 simp3 BCxCCCCC
42 chjcl BCxCBxC
43 42 3adant3 BCxCCCBxC
44 40 41 43 3jca BCxCCCBCCCBxC
45 9 7 39 44 syl3an BHAtomsxHAtomsCHAtomsBCCCBxC
46 chlub BCCCBxCBBxCBxBCBx
47 45 46 syl BHAtomsxHAtomsCHAtomsBBxCBxBCBx
48 47 adantr BHAtomsxHAtomsCHAtomsxA¬BAABCBBxCBxBCBx
49 22 38 48 mpbi2and BHAtomsxHAtomsCHAtomsxA¬BAABCBCBx
50 chub1 BCCCBBC
51 50 3adant2 BCxCCCBBC
52 51 26 anim12i BCxCCCxA¬BAABCBBCxBC
53 chjcl BCCCBCC
54 53 3adant2 BCxCCCBCC
55 chlub BCxCBCCBBCxBCBxBC
56 54 55 syld3an3 BCxCCCBBCxBCBxBC
57 56 adantr BCxCCCxA¬BAABCBBCxBCBxBC
58 52 57 mpbid BCxCCCxA¬BAABCBxBC
59 9 7 39 58 syl3anl BHAtomsxHAtomsCHAtomsxA¬BAABCBxBC
60 49 59 eqssd BHAtomsxHAtomsCHAtomsxA¬BAABCBC=Bx
61 60 anassrs BHAtomsxHAtomsCHAtomsxA¬BAABCBC=Bx
62 61 psseq2d BHAtomsxHAtomsCHAtomsxA¬BAABCABCABx
63 62 ex BHAtomsxHAtomsCHAtomsxA¬BAABCABCABx
64 63 ibd BHAtomsxHAtomsCHAtomsxA¬BAABCABx
65 64 exp32 BHAtomsxHAtomsCHAtomsxA¬BAABCABx
66 65 3expa BHAtomsxHAtomsCHAtomsxA¬BAABCABx
67 66 an32s BHAtomsCHAtomsxHAtomsxA¬BAABCABx
68 67 com34 BHAtomsCHAtomsxHAtomsxAABC¬BAABx
69 68 imp45 BHAtomsCHAtomsxHAtomsxAABC¬BAABx
70 simpr BCxCxC
71 70 42 jca BCxCxCBxC
72 9 7 71 syl2an BHAtomsxHAtomsxCBxC
73 cvnbtwn3 xCBxCACxBxxAABxA=x
74 1 73 mp3an3 xCBxCxBxxAABxA=x
75 74 exp4a xCBxCxBxxAABxA=x
76 75 com23 xCBxCxAxBxABxA=x
77 76 imp4a xCBxCxAxBxABxA=x
78 72 77 syl BHAtomsxHAtomsxAxBxABxA=x
79 78 adantlr BHAtomsCHAtomsxHAtomsxAxBxABxA=x
80 79 imp BHAtomsCHAtomsxHAtomsxAxBxABxA=x
81 80 adantrr BHAtomsCHAtomsxHAtomsxAABC¬BAxBxABxA=x
82 18 69 81 mp2and BHAtomsCHAtomsxHAtomsxAABC¬BAA=x
83 82 eleq1d BHAtomsCHAtomsxHAtomsxAABC¬BAAHAtomsxHAtoms
84 83 biimprcd xHAtomsBHAtomsCHAtomsxHAtomsxAABC¬BAAHAtoms
85 84 exp4c xHAtomsBHAtomsCHAtomsxHAtomsxAABC¬BAAHAtoms
86 85 pm2.43b BHAtomsCHAtomsxHAtomsxAABC¬BAAHAtoms
87 86 imp BHAtomsCHAtomsxHAtomsxAABC¬BAAHAtoms
88 87 exp4d BHAtomsCHAtomsxHAtomsxAABC¬BAAHAtoms
89 88 rexlimdva BHAtomsCHAtomsxHAtomsxAABC¬BAAHAtoms
90 2 89 syl5 BHAtomsCHAtomsA0ABC¬BAAHAtoms
91 90 imp32 BHAtomsCHAtomsA0ABC¬BAAHAtoms