Metamath Proof Explorer


Theorem axcc3

Description: A possibly more useful version of ax-cc using sequences F ( n ) instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypotheses axcc3.1 FV
axcc3.2 Nω
Assertion axcc3 ffFnNnNFfnF

Proof

Step Hyp Ref Expression
1 axcc3.1 FV
2 axcc3.2 Nω
3 relen Rel
4 3 brrelex1i NωNV
5 mptexg NVnNFV
6 2 4 5 mp2b nNFV
7 bren Nωhh:N1-1 ontoω
8 2 7 mpbi hh:N1-1 ontoω
9 axcc2 ggFnωmωkh-1mgmkh-1m
10 f1of h:N1-1 ontoωh:Nω
11 fnfco gFnωh:NωghFnN
12 10 11 sylan2 gFnωh:N1-1 ontoωghFnN
13 12 adantlr gFnωmωkh-1mgmkh-1mh:N1-1 ontoωghFnN
14 13 3adant1 k=nNFgFnωmωkh-1mgmkh-1mh:N1-1 ontoωghFnN
15 nfmpt1 _nnNF
16 15 nfeq2 nk=nNF
17 nfv ngFnωmωkh-1mgmkh-1m
18 nfv nh:N1-1 ontoω
19 16 17 18 nf3an nk=nNFgFnωmωkh-1mgmkh-1mh:N1-1 ontoω
20 10 ffvelcdmda h:N1-1 ontoωnNhnω
21 fveq2 m=hnkh-1m=kh-1hn
22 21 neeq1d m=hnkh-1mkh-1hn
23 fveq2 m=hngm=ghn
24 23 21 eleq12d m=hngmkh-1mghnkh-1hn
25 22 24 imbi12d m=hnkh-1mgmkh-1mkh-1hnghnkh-1hn
26 25 rspcv hnωmωkh-1mgmkh-1mkh-1hnghnkh-1hn
27 20 26 syl h:N1-1 ontoωnNmωkh-1mgmkh-1mkh-1hnghnkh-1hn
28 27 3ad2antl3 k=nNFgFnωh:N1-1 ontoωnNmωkh-1mgmkh-1mkh-1hnghnkh-1hn
29 f1ocnv h:N1-1 ontoωh-1:ω1-1 ontoN
30 f1of h-1:ω1-1 ontoNh-1:ωN
31 29 30 syl h:N1-1 ontoωh-1:ωN
32 fvco3 h-1:ωNhnωkh-1hn=kh-1hn
33 31 20 32 syl2an2r h:N1-1 ontoωnNkh-1hn=kh-1hn
34 33 3adant1 k=nNFh:N1-1 ontoωnNkh-1hn=kh-1hn
35 f1ocnvfv1 h:N1-1 ontoωnNh-1hn=n
36 35 fveq2d h:N1-1 ontoωnNkh-1hn=kn
37 36 3adant1 k=nNFh:N1-1 ontoωnNkh-1hn=kn
38 fveq1 k=nNFkn=nNFn
39 eqid nNF=nNF
40 39 fvmpt2 nNFVnNFn=F
41 1 40 mpan2 nNnNFn=F
42 38 41 sylan9eq k=nNFnNkn=F
43 42 3adant2 k=nNFh:N1-1 ontoωnNkn=F
44 34 37 43 3eqtrd k=nNFh:N1-1 ontoωnNkh-1hn=F
45 44 3expa k=nNFh:N1-1 ontoωnNkh-1hn=F
46 45 3adantl2 k=nNFgFnωh:N1-1 ontoωnNkh-1hn=F
47 46 neeq1d k=nNFgFnωh:N1-1 ontoωnNkh-1hnF
48 10 3ad2ant3 k=nNFgFnωh:N1-1 ontoωh:Nω
49 fvco3 h:NωnNghn=ghn
50 48 49 sylan k=nNFgFnωh:N1-1 ontoωnNghn=ghn
51 50 eleq1d k=nNFgFnωh:N1-1 ontoωnNghnkh-1hnghnkh-1hn
52 46 eleq2d k=nNFgFnωh:N1-1 ontoωnNghnkh-1hnghnF
53 51 52 bitr3d k=nNFgFnωh:N1-1 ontoωnNghnkh-1hnghnF
54 47 53 imbi12d k=nNFgFnωh:N1-1 ontoωnNkh-1hnghnkh-1hnFghnF
55 28 54 sylibd k=nNFgFnωh:N1-1 ontoωnNmωkh-1mgmkh-1mFghnF
56 55 ex k=nNFgFnωh:N1-1 ontoωnNmωkh-1mgmkh-1mFghnF
57 56 com23 k=nNFgFnωh:N1-1 ontoωmωkh-1mgmkh-1mnNFghnF
58 57 3exp k=nNFgFnωh:N1-1 ontoωmωkh-1mgmkh-1mnNFghnF
59 58 com34 k=nNFgFnωmωkh-1mgmkh-1mh:N1-1 ontoωnNFghnF
60 59 imp32 k=nNFgFnωmωkh-1mgmkh-1mh:N1-1 ontoωnNFghnF
61 60 3impia k=nNFgFnωmωkh-1mgmkh-1mh:N1-1 ontoωnNFghnF
62 19 61 ralrimi k=nNFgFnωmωkh-1mgmkh-1mh:N1-1 ontoωnNFghnF
63 vex gV
64 vex hV
65 63 64 coex ghV
66 fneq1 f=ghfFnNghFnN
67 fveq1 f=ghfn=ghn
68 67 eleq1d f=ghfnFghnF
69 68 imbi2d f=ghFfnFFghnF
70 69 ralbidv f=ghnNFfnFnNFghnF
71 66 70 anbi12d f=ghfFnNnNFfnFghFnNnNFghnF
72 65 71 spcev ghFnNnNFghnFffFnNnNFfnF
73 14 62 72 syl2anc k=nNFgFnωmωkh-1mgmkh-1mh:N1-1 ontoωffFnNnNFfnF
74 73 3exp k=nNFgFnωmωkh-1mgmkh-1mh:N1-1 ontoωffFnNnNFfnF
75 74 exlimdv k=nNFggFnωmωkh-1mgmkh-1mh:N1-1 ontoωffFnNnNFfnF
76 9 75 mpi k=nNFh:N1-1 ontoωffFnNnNFfnF
77 76 exlimdv k=nNFhh:N1-1 ontoωffFnNnNFfnF
78 8 77 mpi k=nNFffFnNnNFfnF
79 6 78 vtocle ffFnNnNFfnF