Step |
Hyp |
Ref |
Expression |
1 |
|
baerlem3.v |
|
2 |
|
baerlem3.m |
|
3 |
|
baerlem3.o |
|
4 |
|
baerlem3.s |
|
5 |
|
baerlem3.n |
|
6 |
|
baerlem3.w |
|
7 |
|
baerlem3.x |
|
8 |
|
baerlem3.c |
|
9 |
|
baerlem3.d |
|
10 |
|
baerlem3.y |
|
11 |
|
baerlem3.z |
|
12 |
|
baerlem5a.p |
|
13 |
10
|
eldifad |
|
14 |
11
|
eldifad |
|
15 |
|
eqid |
|
16 |
1 12 15 2
|
grpsubval |
|
17 |
13 14 16
|
syl2anc |
|
18 |
17
|
oveq2d |
|
19 |
18
|
sneqd |
|
20 |
19
|
fveq2d |
|
21 |
|
lveclmod |
|
22 |
6 21
|
syl |
|
23 |
1 15
|
lmodvnegcl |
|
24 |
22 14 23
|
syl2anc |
|
25 |
|
eqid |
|
26 |
1 25 5 22 13 14
|
lspprcl |
|
27 |
3 25 22 26 7 8
|
lssneln0 |
|
28 |
1 5 6 7 13 14 8
|
lspindpi |
|
29 |
28
|
simpld |
|
30 |
1 3 5 6 27 13 29
|
lspsnne1 |
|
31 |
9
|
necomd |
|
32 |
1 3 5 6 11 13 31
|
lspsnne1 |
|
33 |
1 5 6 7 14 13 32 8
|
lspexchn2 |
|
34 |
|
lmodgrp |
|
35 |
6 21 34
|
3syl |
|
36 |
35
|
adantr |
|
37 |
14
|
adantr |
|
38 |
1 15
|
grpinvinv |
|
39 |
36 37 38
|
syl2anc |
|
40 |
22
|
adantr |
|
41 |
1 25 5 22 13 7
|
lspprcl |
|
42 |
41
|
adantr |
|
43 |
|
simpr |
|
44 |
25 15
|
lssvnegcl |
|
45 |
40 42 43 44
|
syl3anc |
|
46 |
39 45
|
eqeltrrd |
|
47 |
33 46
|
mtand |
|
48 |
1 5 6 24 7 13 30 47
|
lspexchn2 |
|
49 |
1 15 5
|
lspsnneg |
|
50 |
22 14 49
|
syl2anc |
|
51 |
9 50
|
neeqtrrd |
|
52 |
1 3 15
|
grpinvnzcl |
|
53 |
35 11 52
|
syl2anc |
|
54 |
1 2 3 4 5 6 7 48 51 10 53 12
|
baerlem5a |
|
55 |
50
|
oveq2d |
|
56 |
1 12 2 15 35 7 14
|
grpsubinv |
|
57 |
56
|
sneqd |
|
58 |
57
|
fveq2d |
|
59 |
58
|
oveq1d |
|
60 |
55 59
|
ineq12d |
|
61 |
20 54 60
|
3eqtrd |
|
62 |
17
|
sneqd |
|
63 |
62
|
fveq2d |
|
64 |
1 2 3 4 5 6 7 48 51 10 53 12
|
baerlem5b |
|
65 |
50
|
oveq2d |
|
66 |
17
|
eqcomd |
|
67 |
66
|
oveq2d |
|
68 |
67
|
sneqd |
|
69 |
68
|
fveq2d |
|
70 |
69
|
oveq1d |
|
71 |
65 70
|
ineq12d |
|
72 |
63 64 71
|
3eqtrd |
|
73 |
61 72
|
jca |
|