Metamath Proof Explorer


Theorem bgoldbnnsum3prm

Description: If the binary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 3 primes, showing that Schnirelmann's constant would be equal to 3. (Contributed by AV, 2-Aug-2020)

Ref Expression
Assertion bgoldbnnsum3prm m Even 4 < m m GoldbachEven n 2 d f 1 d d 3 n = k = 1 d f k

Proof

Step Hyp Ref Expression
1 2z 2
2 9nn 9
3 2 nnzi 9
4 2re 2
5 9re 9
6 2lt9 2 < 9
7 4 5 6 ltleii 2 9
8 eluz2 9 2 2 9 2 9
9 1 3 7 8 mpbir3an 9 2
10 fzouzsplit 9 2 2 = 2 ..^ 9 9
11 10 eleq2d 9 2 n 2 n 2 ..^ 9 9
12 9 11 ax-mp n 2 n 2 ..^ 9 9
13 elun n 2 ..^ 9 9 n 2 ..^ 9 n 9
14 12 13 bitri n 2 n 2 ..^ 9 n 9
15 elfzo2 n 2 ..^ 9 n 2 9 n < 9
16 simp1 n 2 9 n < 9 n 2
17 df-9 9 = 8 + 1
18 17 breq2i n < 9 n < 8 + 1
19 eluz2nn n 2 n
20 8nn 8
21 19 20 jctir n 2 n 8
22 21 adantr n 2 9 n 8
23 nnleltp1 n 8 n 8 n < 8 + 1
24 22 23 syl n 2 9 n 8 n < 8 + 1
25 24 biimprd n 2 9 n < 8 + 1 n 8
26 18 25 syl5bi n 2 9 n < 9 n 8
27 26 3impia n 2 9 n < 9 n 8
28 16 27 jca n 2 9 n < 9 n 2 n 8
29 15 28 sylbi n 2 ..^ 9 n 2 n 8
30 nnsum3primesle9 n 2 n 8 d f 1 d d 3 n = k = 1 d f k
31 29 30 syl n 2 ..^ 9 d f 1 d d 3 n = k = 1 d f k
32 31 a1d n 2 ..^ 9 m Even 4 < m m GoldbachEven d f 1 d d 3 n = k = 1 d f k
33 breq2 m = n 4 < m 4 < n
34 eleq1w m = n m GoldbachEven n GoldbachEven
35 33 34 imbi12d m = n 4 < m m GoldbachEven 4 < n n GoldbachEven
36 35 rspcv n Even m Even 4 < m m GoldbachEven 4 < n n GoldbachEven
37 4re 4
38 37 a1i n 9 4
39 5 a1i n 9 9
40 eluzelre n 9 n
41 38 39 40 3jca n 9 4 9 n
42 41 adantl n Even n 9 4 9 n
43 eluzle n 9 9 n
44 43 adantl n Even n 9 9 n
45 4lt9 4 < 9
46 44 45 jctil n Even n 9 4 < 9 9 n
47 ltletr 4 9 n 4 < 9 9 n 4 < n
48 42 46 47 sylc n Even n 9 4 < n
49 pm2.27 4 < n 4 < n n GoldbachEven n GoldbachEven
50 48 49 syl n Even n 9 4 < n n GoldbachEven n GoldbachEven
51 50 ex n Even n 9 4 < n n GoldbachEven n GoldbachEven
52 36 51 syl5d n Even n 9 m Even 4 < m m GoldbachEven n GoldbachEven
53 52 impcom n 9 n Even m Even 4 < m m GoldbachEven n GoldbachEven
54 nnsum3primesgbe n GoldbachEven d f 1 d d 3 n = k = 1 d f k
55 53 54 syl6 n 9 n Even m Even 4 < m m GoldbachEven d f 1 d d 3 n = k = 1 d f k
56 3nn 3
57 56 a1i n 9 n Odd o Odd 5 < o o GoldbachOddW 3
58 oveq2 d = 3 1 d = 1 3
59 58 oveq2d d = 3 1 d = 1 3
60 breq1 d = 3 d 3 3 3
61 58 sumeq1d d = 3 k = 1 d f k = k = 1 3 f k
62 61 eqeq2d d = 3 n = k = 1 d f k n = k = 1 3 f k
63 60 62 anbi12d d = 3 d 3 n = k = 1 d f k 3 3 n = k = 1 3 f k
64 59 63 rexeqbidv d = 3 f 1 d d 3 n = k = 1 d f k f 1 3 3 3 n = k = 1 3 f k
65 64 adantl n 9 n Odd o Odd 5 < o o GoldbachOddW d = 3 f 1 d d 3 n = k = 1 d f k f 1 3 3 3 n = k = 1 3 f k
66 3re 3
67 66 leidi 3 3
68 67 a1i n 9 n Odd o Odd 5 < o o GoldbachOddW 3 3
69 6nn 6
70 69 nnzi 6
71 6re 6
72 6lt9 6 < 9
73 71 5 72 ltleii 6 9
74 eluzuzle 6 6 9 n 9 n 6
75 70 73 74 mp2an n 9 n 6
76 75 anim1i n 9 n Odd n 6 n Odd
77 nnsum4primesodd o Odd 5 < o o GoldbachOddW n 6 n Odd f 1 3 n = k = 1 3 f k
78 76 77 mpan9 n 9 n Odd o Odd 5 < o o GoldbachOddW f 1 3 n = k = 1 3 f k
79 r19.42v f 1 3 3 3 n = k = 1 3 f k 3 3 f 1 3 n = k = 1 3 f k
80 68 78 79 sylanbrc n 9 n Odd o Odd 5 < o o GoldbachOddW f 1 3 3 3 n = k = 1 3 f k
81 57 65 80 rspcedvd n 9 n Odd o Odd 5 < o o GoldbachOddW d f 1 d d 3 n = k = 1 d f k
82 81 expcom o Odd 5 < o o GoldbachOddW n 9 n Odd d f 1 d d 3 n = k = 1 d f k
83 sbgoldbwt m Even 4 < m m GoldbachEven o Odd 5 < o o GoldbachOddW
84 82 83 syl11 n 9 n Odd m Even 4 < m m GoldbachEven d f 1 d d 3 n = k = 1 d f k
85 eluzelz n 9 n
86 zeoALTV n n Even n Odd
87 85 86 syl n 9 n Even n Odd
88 55 84 87 mpjaodan n 9 m Even 4 < m m GoldbachEven d f 1 d d 3 n = k = 1 d f k
89 32 88 jaoi n 2 ..^ 9 n 9 m Even 4 < m m GoldbachEven d f 1 d d 3 n = k = 1 d f k
90 14 89 sylbi n 2 m Even 4 < m m GoldbachEven d f 1 d d 3 n = k = 1 d f k
91 90 impcom m Even 4 < m m GoldbachEven n 2 d f 1 d d 3 n = k = 1 d f k
92 91 ralrimiva m Even 4 < m m GoldbachEven n 2 d f 1 d d 3 n = k = 1 d f k