Metamath Proof Explorer


Theorem bgoldbnnsum3prm

Description: If the binary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 3 primes, showing that Schnirelmann's constant would be equal to 3. (Contributed by AV, 2-Aug-2020)

Ref Expression
Assertion bgoldbnnsum3prm mEven4<mmGoldbachEvenn2df1dd3n=k=1dfk

Proof

Step Hyp Ref Expression
1 2z 2
2 9nn 9
3 2 nnzi 9
4 2re 2
5 9re 9
6 2lt9 2<9
7 4 5 6 ltleii 29
8 eluz2 922929
9 1 3 7 8 mpbir3an 92
10 fzouzsplit 922=2..^99
11 10 eleq2d 92n2n2..^99
12 9 11 ax-mp n2n2..^99
13 elun n2..^99n2..^9n9
14 12 13 bitri n2n2..^9n9
15 elfzo2 n2..^9n29n<9
16 simp1 n29n<9n2
17 df-9 9=8+1
18 17 breq2i n<9n<8+1
19 eluz2nn n2n
20 8nn 8
21 19 20 jctir n2n8
22 21 adantr n29n8
23 nnleltp1 n8n8n<8+1
24 22 23 syl n29n8n<8+1
25 24 biimprd n29n<8+1n8
26 18 25 biimtrid n29n<9n8
27 26 3impia n29n<9n8
28 16 27 jca n29n<9n2n8
29 15 28 sylbi n2..^9n2n8
30 nnsum3primesle9 n2n8df1dd3n=k=1dfk
31 29 30 syl n2..^9df1dd3n=k=1dfk
32 31 a1d n2..^9mEven4<mmGoldbachEvendf1dd3n=k=1dfk
33 breq2 m=n4<m4<n
34 eleq1w m=nmGoldbachEvennGoldbachEven
35 33 34 imbi12d m=n4<mmGoldbachEven4<nnGoldbachEven
36 35 rspcv nEvenmEven4<mmGoldbachEven4<nnGoldbachEven
37 4re 4
38 37 a1i n94
39 5 a1i n99
40 eluzelre n9n
41 38 39 40 3jca n949n
42 41 adantl nEvenn949n
43 eluzle n99n
44 43 adantl nEvenn99n
45 4lt9 4<9
46 44 45 jctil nEvenn94<99n
47 ltletr 49n4<99n4<n
48 42 46 47 sylc nEvenn94<n
49 pm2.27 4<n4<nnGoldbachEvennGoldbachEven
50 48 49 syl nEvenn94<nnGoldbachEvennGoldbachEven
51 50 ex nEvenn94<nnGoldbachEvennGoldbachEven
52 36 51 syl5d nEvenn9mEven4<mmGoldbachEvennGoldbachEven
53 52 impcom n9nEvenmEven4<mmGoldbachEvennGoldbachEven
54 nnsum3primesgbe nGoldbachEvendf1dd3n=k=1dfk
55 53 54 syl6 n9nEvenmEven4<mmGoldbachEvendf1dd3n=k=1dfk
56 3nn 3
57 56 a1i n9nOddoOdd5<ooGoldbachOddW3
58 oveq2 d=31d=13
59 58 oveq2d d=31d=13
60 breq1 d=3d333
61 58 sumeq1d d=3k=1dfk=k=13fk
62 61 eqeq2d d=3n=k=1dfkn=k=13fk
63 60 62 anbi12d d=3d3n=k=1dfk33n=k=13fk
64 59 63 rexeqbidv d=3f1dd3n=k=1dfkf1333n=k=13fk
65 64 adantl n9nOddoOdd5<ooGoldbachOddWd=3f1dd3n=k=1dfkf1333n=k=13fk
66 3re 3
67 66 leidi 33
68 67 a1i n9nOddoOdd5<ooGoldbachOddW33
69 6nn 6
70 69 nnzi 6
71 6re 6
72 6lt9 6<9
73 71 5 72 ltleii 69
74 eluzuzle 669n9n6
75 70 73 74 mp2an n9n6
76 75 anim1i n9nOddn6nOdd
77 nnsum4primesodd oOdd5<ooGoldbachOddWn6nOddf13n=k=13fk
78 76 77 mpan9 n9nOddoOdd5<ooGoldbachOddWf13n=k=13fk
79 r19.42v f1333n=k=13fk33f13n=k=13fk
80 68 78 79 sylanbrc n9nOddoOdd5<ooGoldbachOddWf1333n=k=13fk
81 57 65 80 rspcedvd n9nOddoOdd5<ooGoldbachOddWdf1dd3n=k=1dfk
82 81 expcom oOdd5<ooGoldbachOddWn9nOdddf1dd3n=k=1dfk
83 sbgoldbwt mEven4<mmGoldbachEvenoOdd5<ooGoldbachOddW
84 82 83 syl11 n9nOddmEven4<mmGoldbachEvendf1dd3n=k=1dfk
85 eluzelz n9n
86 zeoALTV nnEvennOdd
87 85 86 syl n9nEvennOdd
88 55 84 87 mpjaodan n9mEven4<mmGoldbachEvendf1dd3n=k=1dfk
89 32 88 jaoi n2..^9n9mEven4<mmGoldbachEvendf1dd3n=k=1dfk
90 14 89 sylbi n2mEven4<mmGoldbachEvendf1dd3n=k=1dfk
91 90 impcom mEven4<mmGoldbachEvenn2df1dd3n=k=1dfk
92 91 ralrimiva mEven4<mmGoldbachEvenn2df1dd3n=k=1dfk