Metamath Proof Explorer


Theorem bj-prmoore

Description: A pair formed of two nested sets is a Moore collection. (Note that in the statement, if B is a proper class, we are in the case of bj-snmoore ). A direct consequence is |- { (/) , A } e. Moore_ .

More generally, any nonempty well-ordered chain of sets that is a set is a Moore collection.

We also have the biconditional |- ( ( A i^i B ) e. V -> ( { A , B } e. Moore_ <-> ( A C_ B \/ B C_ A ) ) ) . (Contributed by BJ, 11-Apr-2024)

Ref Expression
Assertion bj-prmoore A V A B A B Moore _

Proof

Step Hyp Ref Expression
1 pm3.22 B V A V A V B V
2 1 adantrr B V A V A B A V B V
3 uniprg A V B V A B = A B
4 2 3 syl B V A V A B A B = A B
5 simprr B V A V A B A B
6 ssequn1 A B A B = B
7 5 6 sylib B V A V A B A B = B
8 4 7 eqtrd B V A V A B A B = B
9 prid2g B V B A B
10 9 adantr B V A V A B B A B
11 8 10 eqeltrd B V A V A B A B A B
12 biid A V A B A V A B
13 12 bianass B V A V A B B V A V A B
14 inteq x = A x = A
15 intsng A V A = A
16 15 adantl B V A V A = A
17 14 16 sylan9eqr B V A V x = A x = A
18 prid1g A V A A B
19 18 adantl B V A V A A B
20 19 adantr B V A V x = A A A B
21 17 20 eqeltrd B V A V x = A x A B
22 21 ex B V A V x = A x A B
23 22 adantr B V A V A B x = A x A B
24 inteq x = B x = B
25 intsng B V B = B
26 25 adantr B V A V B = B
27 24 26 sylan9eqr B V A V x = B x = B
28 9 ad2antrr B V A V x = B B A B
29 27 28 eqeltrd B V A V x = B x A B
30 29 ex B V A V x = B x A B
31 30 adantr B V A V A B x = B x A B
32 inteq x = A B x = A B
33 32 adantl B V A V A B x = A B x = A B
34 1 ad2antrr B V A V A B x = A B A V B V
35 intprg A V B V A B = A B
36 34 35 syl B V A V A B x = A B A B = A B
37 df-ss A B A B = A
38 37 biimpi A B A B = A
39 38 adantl B V A V A B A B = A
40 39 adantr B V A V A B x = A B A B = A
41 33 36 40 3eqtrd B V A V A B x = A B x = A
42 18 ad3antlr B V A V A B x = A B A A B
43 41 42 eqeltrd B V A V A B x = A B x A B
44 43 ex B V A V A B x = A B x A B
45 31 44 jaod B V A V A B x = B x = A B x A B
46 23 45 jaod B V A V A B x = A x = B x = A B x A B
47 sspr x A B x = x = A x = B x = A B
48 andir x = x = A x = B x = A B x x = x = A x x = B x = A B x
49 andir x = x = A x x = x x = A x
50 eqneqall x = x
51 50 imp x = x
52 simpl x = A x x = A
53 51 52 orim12i x = x x = A x x = A
54 falim x = A
55 54 bj-jaoi1 x = A x = A
56 53 55 syl x = x x = A x x = A
57 49 56 sylbi x = x = A x x = A
58 simpl x = B x = A B x x = B x = A B
59 57 58 orim12i x = x = A x x = B x = A B x x = A x = B x = A B
60 48 59 sylbi x = x = A x = B x = A B x x = A x = B x = A B
61 47 60 sylanb x A B x x = A x = B x = A B
62 46 61 impel B V A V A B x A B x x A B
63 13 62 sylanb B V A V A B x A B x x A B
64 11 63 bj-ismooredr2 B V A V A B A B Moore _
65 pm3.22 ¬ B V A V A V ¬ B V
66 65 adantrr ¬ B V A V A B A V ¬ B V
67 prprc2 ¬ B V A B = A
68 67 adantl A V ¬ B V A B = A
69 68 eqcomd A V ¬ B V A = A B
70 66 69 syl ¬ B V A V A B A = A B
71 bj-snmoore A V A Moore _
72 71 ad2antrl ¬ B V A V A B A Moore _
73 70 72 eqeltrrd ¬ B V A V A B A B Moore _
74 64 73 pm2.61ian A V A B A B Moore _