Description: A pair formed of two nested sets is a Moore collection. (Note that in the statement, if B is a proper class, we are in the case of bj-snmoore ). A direct consequence is |- { (/) , A } e. Moore_ .
More generally, any nonempty well-ordered chain of sets that is a set is a Moore collection.
We also have the biconditional |- ( ( A i^i B ) e. V -> ( { A , B } e. Moore_ <-> ( A C_ B \/ B C_ A ) ) ) . (Contributed by BJ, 11-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-prmoore | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 | |
|
2 | 1 | adantrr | |
3 | uniprg | |
|
4 | 2 3 | syl | |
5 | simprr | |
|
6 | ssequn1 | |
|
7 | 5 6 | sylib | |
8 | 4 7 | eqtrd | |
9 | prid2g | |
|
10 | 9 | adantr | |
11 | 8 10 | eqeltrd | |
12 | biid | |
|
13 | 12 | bianass | |
14 | inteq | |
|
15 | intsng | |
|
16 | 15 | adantl | |
17 | 14 16 | sylan9eqr | |
18 | prid1g | |
|
19 | 18 | adantl | |
20 | 19 | adantr | |
21 | 17 20 | eqeltrd | |
22 | 21 | ex | |
23 | 22 | adantr | |
24 | inteq | |
|
25 | intsng | |
|
26 | 25 | adantr | |
27 | 24 26 | sylan9eqr | |
28 | 9 | ad2antrr | |
29 | 27 28 | eqeltrd | |
30 | 29 | ex | |
31 | 30 | adantr | |
32 | inteq | |
|
33 | 32 | adantl | |
34 | 1 | ad2antrr | |
35 | intprg | |
|
36 | 34 35 | syl | |
37 | df-ss | |
|
38 | 37 | biimpi | |
39 | 38 | adantl | |
40 | 39 | adantr | |
41 | 33 36 40 | 3eqtrd | |
42 | 18 | ad3antlr | |
43 | 41 42 | eqeltrd | |
44 | 43 | ex | |
45 | 31 44 | jaod | |
46 | 23 45 | jaod | |
47 | sspr | |
|
48 | andir | |
|
49 | andir | |
|
50 | eqneqall | |
|
51 | 50 | imp | |
52 | simpl | |
|
53 | 51 52 | orim12i | |
54 | falim | |
|
55 | 54 | bj-jaoi1 | |
56 | 53 55 | syl | |
57 | 49 56 | sylbi | |
58 | simpl | |
|
59 | 57 58 | orim12i | |
60 | 48 59 | sylbi | |
61 | 47 60 | sylanb | |
62 | 46 61 | impel | |
63 | 13 62 | sylanb | |
64 | 11 63 | bj-ismooredr2 | |
65 | pm3.22 | |
|
66 | 65 | adantrr | |
67 | prprc2 | |
|
68 | 67 | adantl | |
69 | 68 | eqcomd | |
70 | 66 69 | syl | |
71 | bj-snmoore | |
|
72 | 71 | ad2antrl | |
73 | 70 72 | eqeltrrd | |
74 | 64 73 | pm2.61ian | |