Metamath Proof Explorer


Theorem bj-prmoore

Description: A pair formed of two nested sets is a Moore collection. (Note that in the statement, if B is a proper class, we are in the case of bj-snmoore ). A direct consequence is |- { (/) , A } e. Moore_ .

More generally, any nonempty well-ordered chain of sets that is a set is a Moore collection.

We also have the biconditional |- ( ( A i^i B ) e. V -> ( { A , B } e. Moore_ <-> ( A C_ B \/ B C_ A ) ) ) . (Contributed by BJ, 11-Apr-2024)

Ref Expression
Assertion bj-prmoore AVABABMoore_

Proof

Step Hyp Ref Expression
1 pm3.22 BVAVAVBV
2 1 adantrr BVAVABAVBV
3 uniprg AVBVAB=AB
4 2 3 syl BVAVABAB=AB
5 simprr BVAVABAB
6 ssequn1 ABAB=B
7 5 6 sylib BVAVABAB=B
8 4 7 eqtrd BVAVABAB=B
9 prid2g BVBAB
10 9 adantr BVAVABBAB
11 8 10 eqeltrd BVAVABABAB
12 biid AVABAVAB
13 12 bianass BVAVABBVAVAB
14 inteq x=Ax=A
15 intsng AVA=A
16 15 adantl BVAVA=A
17 14 16 sylan9eqr BVAVx=Ax=A
18 prid1g AVAAB
19 18 adantl BVAVAAB
20 19 adantr BVAVx=AAAB
21 17 20 eqeltrd BVAVx=AxAB
22 21 ex BVAVx=AxAB
23 22 adantr BVAVABx=AxAB
24 inteq x=Bx=B
25 intsng BVB=B
26 25 adantr BVAVB=B
27 24 26 sylan9eqr BVAVx=Bx=B
28 9 ad2antrr BVAVx=BBAB
29 27 28 eqeltrd BVAVx=BxAB
30 29 ex BVAVx=BxAB
31 30 adantr BVAVABx=BxAB
32 inteq x=ABx=AB
33 32 adantl BVAVABx=ABx=AB
34 1 ad2antrr BVAVABx=ABAVBV
35 intprg AVBVAB=AB
36 34 35 syl BVAVABx=ABAB=AB
37 df-ss ABAB=A
38 37 biimpi ABAB=A
39 38 adantl BVAVABAB=A
40 39 adantr BVAVABx=ABAB=A
41 33 36 40 3eqtrd BVAVABx=ABx=A
42 18 ad3antlr BVAVABx=ABAAB
43 41 42 eqeltrd BVAVABx=ABxAB
44 43 ex BVAVABx=ABxAB
45 31 44 jaod BVAVABx=Bx=ABxAB
46 23 45 jaod BVAVABx=Ax=Bx=ABxAB
47 sspr xABx=x=Ax=Bx=AB
48 andir x=x=Ax=Bx=ABxx=x=Axx=Bx=ABx
49 andir x=x=Axx=xx=Ax
50 eqneqall x=x
51 50 imp x=x
52 simpl x=Axx=A
53 51 52 orim12i x=xx=Axx=A
54 falim x=A
55 54 bj-jaoi1 x=Ax=A
56 53 55 syl x=xx=Axx=A
57 49 56 sylbi x=x=Axx=A
58 simpl x=Bx=ABxx=Bx=AB
59 57 58 orim12i x=x=Axx=Bx=ABxx=Ax=Bx=AB
60 48 59 sylbi x=x=Ax=Bx=ABxx=Ax=Bx=AB
61 47 60 sylanb xABxx=Ax=Bx=AB
62 46 61 impel BVAVABxABxxAB
63 13 62 sylanb BVAVABxABxxAB
64 11 63 bj-ismooredr2 BVAVABABMoore_
65 pm3.22 ¬BVAVAV¬BV
66 65 adantrr ¬BVAVABAV¬BV
67 prprc2 ¬BVAB=A
68 67 adantl AV¬BVAB=A
69 68 eqcomd AV¬BVA=AB
70 66 69 syl ¬BVAVABA=AB
71 bj-snmoore AVAMoore_
72 71 ad2antrl ¬BVAVABAMoore_
73 70 72 eqeltrrd ¬BVAVABABMoore_
74 64 73 pm2.61ian AVABABMoore_