| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm3.22 |
|
| 2 |
1
|
adantrr |
|
| 3 |
|
uniprg |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
simprr |
|
| 6 |
|
ssequn1 |
|
| 7 |
5 6
|
sylib |
|
| 8 |
4 7
|
eqtrd |
|
| 9 |
|
prid2g |
|
| 10 |
9
|
adantr |
|
| 11 |
8 10
|
eqeltrd |
|
| 12 |
|
biid |
|
| 13 |
12
|
bianass |
|
| 14 |
|
inteq |
|
| 15 |
|
intsng |
|
| 16 |
15
|
adantl |
|
| 17 |
14 16
|
sylan9eqr |
|
| 18 |
|
prid1g |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
adantr |
|
| 21 |
17 20
|
eqeltrd |
|
| 22 |
21
|
ex |
|
| 23 |
22
|
adantr |
|
| 24 |
|
inteq |
|
| 25 |
|
intsng |
|
| 26 |
25
|
adantr |
|
| 27 |
24 26
|
sylan9eqr |
|
| 28 |
9
|
ad2antrr |
|
| 29 |
27 28
|
eqeltrd |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
adantr |
|
| 32 |
|
inteq |
|
| 33 |
32
|
adantl |
|
| 34 |
1
|
ad2antrr |
|
| 35 |
|
intprg |
|
| 36 |
34 35
|
syl |
|
| 37 |
|
dfss2 |
|
| 38 |
37
|
biimpi |
|
| 39 |
38
|
adantl |
|
| 40 |
39
|
adantr |
|
| 41 |
33 36 40
|
3eqtrd |
|
| 42 |
18
|
ad3antlr |
|
| 43 |
41 42
|
eqeltrd |
|
| 44 |
43
|
ex |
|
| 45 |
31 44
|
jaod |
|
| 46 |
23 45
|
jaod |
|
| 47 |
|
sspr |
|
| 48 |
|
andir |
|
| 49 |
|
andir |
|
| 50 |
|
eqneqall |
|
| 51 |
50
|
imp |
|
| 52 |
|
simpl |
|
| 53 |
51 52
|
orim12i |
|
| 54 |
|
falim |
|
| 55 |
54
|
bj-jaoi1 |
|
| 56 |
53 55
|
syl |
|
| 57 |
49 56
|
sylbi |
|
| 58 |
|
simpl |
|
| 59 |
57 58
|
orim12i |
|
| 60 |
48 59
|
sylbi |
|
| 61 |
47 60
|
sylanb |
|
| 62 |
46 61
|
impel |
|
| 63 |
13 62
|
sylanb |
|
| 64 |
11 63
|
bj-ismooredr2 |
|
| 65 |
|
pm3.22 |
|
| 66 |
65
|
adantrr |
|
| 67 |
|
prprc2 |
|
| 68 |
67
|
adantl |
|
| 69 |
68
|
eqcomd |
|
| 70 |
66 69
|
syl |
|
| 71 |
|
bj-snmoore |
|
| 72 |
71
|
ad2antrl |
|
| 73 |
70 72
|
eqeltrrd |
|
| 74 |
64 73
|
pm2.61ian |
|