Metamath Proof Explorer


Theorem bnj1452

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1452.1 B=d|dAxdpredxARd
bnj1452.2 Y=xfpredxAR
bnj1452.3 C=f|dBfFndxdfx=GY
bnj1452.4 τfCdomf=xtrClxAR
bnj1452.5 D=xA|¬fτ
bnj1452.6 ψRFrSeAD
bnj1452.7 χψxDyD¬yRx
bnj1452.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1452.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1452.10 P=H
bnj1452.11 Z=xPpredxAR
bnj1452.12 Q=PxGZ
bnj1452.13 W=zQpredzAR
bnj1452.14 E=xtrClxAR
Assertion bnj1452 χEB

Proof

Step Hyp Ref Expression
1 bnj1452.1 B=d|dAxdpredxARd
2 bnj1452.2 Y=xfpredxAR
3 bnj1452.3 C=f|dBfFndxdfx=GY
4 bnj1452.4 τfCdomf=xtrClxAR
5 bnj1452.5 D=xA|¬fτ
6 bnj1452.6 ψRFrSeAD
7 bnj1452.7 χψxDyD¬yRx
8 bnj1452.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1452.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1452.10 P=H
11 bnj1452.11 Z=xPpredxAR
12 bnj1452.12 Q=PxGZ
13 bnj1452.13 W=zQpredzAR
14 bnj1452.14 E=xtrClxAR
15 5 7 bnj1212 χxA
16 15 snssd χxA
17 bnj1147 trClxARA
18 17 a1i χtrClxARA
19 16 18 unssd χxtrClxARA
20 14 19 eqsstrid χEA
21 elsni zxz=x
22 21 adantl χzEzxz=x
23 bnj602 z=xpredzAR=predxAR
24 22 23 syl χzEzxpredzAR=predxAR
25 6 simplbi ψRFrSeA
26 7 25 bnj835 χRFrSeA
27 bnj906 RFrSeAxApredxARtrClxAR
28 26 15 27 syl2anc χpredxARtrClxAR
29 28 ad2antrr χzEzxpredxARtrClxAR
30 24 29 eqsstrd χzEzxpredzARtrClxAR
31 ssun4 predzARtrClxARpredzARxtrClxAR
32 31 14 sseqtrrdi predzARtrClxARpredzARE
33 30 32 syl χzEzxpredzARE
34 26 ad2antrr χzEztrClxARRFrSeA
35 simpr χzEztrClxARztrClxAR
36 17 35 bnj1213 χzEztrClxARzA
37 bnj906 RFrSeAzApredzARtrClzAR
38 34 36 37 syl2anc χzEztrClxARpredzARtrClzAR
39 15 ad2antrr χzEztrClxARxA
40 bnj1125 RFrSeAxAztrClxARtrClzARtrClxAR
41 34 39 35 40 syl3anc χzEztrClxARtrClzARtrClxAR
42 38 41 sstrd χzEztrClxARpredzARtrClxAR
43 42 32 syl χzEztrClxARpredzARE
44 14 bnj1424 zEzxztrClxAR
45 44 adantl χzEzxztrClxAR
46 33 43 45 mpjaodan χzEpredzARE
47 46 ralrimiva χzEpredzARE
48 vsnex xV
49 48 a1i χxV
50 bnj893 RFrSeAxAtrClxARV
51 26 15 50 syl2anc χtrClxARV
52 49 51 bnj1149 χxtrClxARV
53 14 52 eqeltrid χEV
54 1 bnj1454 EVEB[˙E/d]˙dAxdpredxARd
55 53 54 syl χEB[˙E/d]˙dAxdpredxARd
56 bnj602 x=zpredxAR=predzAR
57 56 sseq1d x=zpredxARdpredzARd
58 57 cbvralvw xdpredxARdzdpredzARd
59 58 anbi2i dAxdpredxARddAzdpredzARd
60 59 sbcbii [˙E/d]˙dAxdpredxARd[˙E/d]˙dAzdpredzARd
61 55 60 bitrdi χEB[˙E/d]˙dAzdpredzARd
62 sseq1 d=EdAEA
63 sseq2 d=EpredzARdpredzARE
64 63 raleqbi1dv d=EzdpredzARdzEpredzARE
65 62 64 anbi12d d=EdAzdpredzARdEAzEpredzARE
66 65 sbcieg EV[˙E/d]˙dAzdpredzARdEAzEpredzARE
67 53 66 syl χ[˙E/d]˙dAzdpredzARdEAzEpredzARE
68 61 67 bitrd χEBEAzEpredzARE
69 20 47 68 mpbir2and χEB