Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1452.1 | |
|
bnj1452.2 | |
||
bnj1452.3 | |
||
bnj1452.4 | |
||
bnj1452.5 | |
||
bnj1452.6 | |
||
bnj1452.7 | |
||
bnj1452.8 | No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | ||
bnj1452.9 | No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | ||
bnj1452.10 | |
||
bnj1452.11 | |
||
bnj1452.12 | |
||
bnj1452.13 | |
||
bnj1452.14 | |
||
Assertion | bnj1452 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1452.1 | |
|
2 | bnj1452.2 | |
|
3 | bnj1452.3 | |
|
4 | bnj1452.4 | |
|
5 | bnj1452.5 | |
|
6 | bnj1452.6 | |
|
7 | bnj1452.7 | |
|
8 | bnj1452.8 | Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | |
9 | bnj1452.9 | Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | |
10 | bnj1452.10 | |
|
11 | bnj1452.11 | |
|
12 | bnj1452.12 | |
|
13 | bnj1452.13 | |
|
14 | bnj1452.14 | |
|
15 | 5 7 | bnj1212 | |
16 | 15 | snssd | |
17 | bnj1147 | |
|
18 | 17 | a1i | |
19 | 16 18 | unssd | |
20 | 14 19 | eqsstrid | |
21 | elsni | |
|
22 | 21 | adantl | |
23 | bnj602 | |
|
24 | 22 23 | syl | |
25 | 6 | simplbi | |
26 | 7 25 | bnj835 | |
27 | bnj906 | |
|
28 | 26 15 27 | syl2anc | |
29 | 28 | ad2antrr | |
30 | 24 29 | eqsstrd | |
31 | ssun4 | |
|
32 | 31 14 | sseqtrrdi | |
33 | 30 32 | syl | |
34 | 26 | ad2antrr | |
35 | simpr | |
|
36 | 17 35 | bnj1213 | |
37 | bnj906 | |
|
38 | 34 36 37 | syl2anc | |
39 | 15 | ad2antrr | |
40 | bnj1125 | |
|
41 | 34 39 35 40 | syl3anc | |
42 | 38 41 | sstrd | |
43 | 42 32 | syl | |
44 | 14 | bnj1424 | |
45 | 44 | adantl | |
46 | 33 43 45 | mpjaodan | |
47 | 46 | ralrimiva | |
48 | vsnex | |
|
49 | 48 | a1i | |
50 | bnj893 | |
|
51 | 26 15 50 | syl2anc | |
52 | 49 51 | bnj1149 | |
53 | 14 52 | eqeltrid | |
54 | 1 | bnj1454 | |
55 | 53 54 | syl | |
56 | bnj602 | |
|
57 | 56 | sseq1d | |
58 | 57 | cbvralvw | |
59 | 58 | anbi2i | |
60 | 59 | sbcbii | |
61 | 55 60 | bitrdi | |
62 | sseq1 | |
|
63 | sseq2 | |
|
64 | 63 | raleqbi1dv | |
65 | 62 64 | anbi12d | |
66 | 65 | sbcieg | |
67 | 53 66 | syl | |
68 | 61 67 | bitrd | |
69 | 20 47 68 | mpbir2and | |