Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014) (Proof shortened by Mario Carneiro, 22-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | bpolysum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | nn0uz | |
|
3 | 1 2 | eleqtrdi | |
4 | elfzelz | |
|
5 | bccl | |
|
6 | 1 4 5 | syl2an | |
7 | 6 | nn0cnd | |
8 | elfznn0 | |
|
9 | simpr | |
|
10 | bpolycl | |
|
11 | 8 9 10 | syl2anr | |
12 | fznn0sub | |
|
13 | 12 | adantl | |
14 | nn0p1nn | |
|
15 | 13 14 | syl | |
16 | 15 | nncnd | |
17 | 15 | nnne0d | |
18 | 11 16 17 | divcld | |
19 | 7 18 | mulcld | |
20 | oveq2 | |
|
21 | oveq1 | |
|
22 | oveq2 | |
|
23 | 22 | oveq1d | |
24 | 21 23 | oveq12d | |
25 | 20 24 | oveq12d | |
26 | 3 19 25 | fsumm1 | |
27 | bcnn | |
|
28 | 27 | adantr | |
29 | nn0cn | |
|
30 | 29 | adantr | |
31 | 30 | subidd | |
32 | 31 | oveq1d | |
33 | 0p1e1 | |
|
34 | 32 33 | eqtrdi | |
35 | 34 | oveq2d | |
36 | bpolycl | |
|
37 | 36 | div1d | |
38 | 35 37 | eqtrd | |
39 | 28 38 | oveq12d | |
40 | 36 | mullidd | |
41 | 39 40 | eqtrd | |
42 | 41 | oveq2d | |
43 | bpolyval | |
|
44 | 43 | eqcomd | |
45 | expcl | |
|
46 | 45 | ancoms | |
47 | fzfid | |
|
48 | fzssp1 | |
|
49 | ax-1cn | |
|
50 | npcan | |
|
51 | 30 49 50 | sylancl | |
52 | 51 | oveq2d | |
53 | 48 52 | sseqtrid | |
54 | 53 | sselda | |
55 | 54 19 | syldan | |
56 | 47 55 | fsumcl | |
57 | 46 56 36 | subaddd | |
58 | 44 57 | mpbid | |
59 | 26 42 58 | 3eqtrd | |