| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
nn0uz |
|
| 3 |
1 2
|
eleqtrdi |
|
| 4 |
|
elfzelz |
|
| 5 |
|
bccl |
|
| 6 |
1 4 5
|
syl2an |
|
| 7 |
6
|
nn0cnd |
|
| 8 |
|
elfznn0 |
|
| 9 |
|
simpr |
|
| 10 |
|
bpolycl |
|
| 11 |
8 9 10
|
syl2anr |
|
| 12 |
|
fznn0sub |
|
| 13 |
12
|
adantl |
|
| 14 |
|
nn0p1nn |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
nncnd |
|
| 17 |
15
|
nnne0d |
|
| 18 |
11 16 17
|
divcld |
|
| 19 |
7 18
|
mulcld |
|
| 20 |
|
oveq2 |
|
| 21 |
|
oveq1 |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
oveq1d |
|
| 24 |
21 23
|
oveq12d |
|
| 25 |
20 24
|
oveq12d |
|
| 26 |
3 19 25
|
fsumm1 |
|
| 27 |
|
bcnn |
|
| 28 |
27
|
adantr |
|
| 29 |
|
nn0cn |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
subidd |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
0p1e1 |
|
| 34 |
32 33
|
eqtrdi |
|
| 35 |
34
|
oveq2d |
|
| 36 |
|
bpolycl |
|
| 37 |
36
|
div1d |
|
| 38 |
35 37
|
eqtrd |
|
| 39 |
28 38
|
oveq12d |
|
| 40 |
36
|
mullidd |
|
| 41 |
39 40
|
eqtrd |
|
| 42 |
41
|
oveq2d |
|
| 43 |
|
bpolyval |
|
| 44 |
43
|
eqcomd |
|
| 45 |
|
expcl |
|
| 46 |
45
|
ancoms |
|
| 47 |
|
fzfid |
|
| 48 |
|
fzssp1 |
|
| 49 |
|
ax-1cn |
|
| 50 |
|
npcan |
|
| 51 |
30 49 50
|
sylancl |
|
| 52 |
51
|
oveq2d |
|
| 53 |
48 52
|
sseqtrid |
|
| 54 |
53
|
sselda |
|
| 55 |
54 19
|
syldan |
|
| 56 |
47 55
|
fsumcl |
|
| 57 |
46 56 36
|
subaddd |
|
| 58 |
44 57
|
mpbid |
|
| 59 |
26 42 58
|
3eqtrd |
|