Metamath Proof Explorer


Theorem brcgr

Description: The binary relation form of the congruence predicate. The statement <. A , B >. Cgr <. C , D >. should be read informally as "the N dimensional point A is as far from B as C is from D , or "the line segment A B is congruent to the line segment C D . This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion brcgr A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D i = 1 N A i B i 2 = i = 1 N C i D i 2

Proof

Step Hyp Ref Expression
1 opex A B V
2 opex C D V
3 eleq1 x = A B x 𝔼 n × 𝔼 n A B 𝔼 n × 𝔼 n
4 3 anbi1d x = A B x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n A B 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n
5 fveq2 x = A B 1 st x = 1 st A B
6 5 fveq1d x = A B 1 st x i = 1 st A B i
7 fveq2 x = A B 2 nd x = 2 nd A B
8 7 fveq1d x = A B 2 nd x i = 2 nd A B i
9 6 8 oveq12d x = A B 1 st x i 2 nd x i = 1 st A B i 2 nd A B i
10 9 oveq1d x = A B 1 st x i 2 nd x i 2 = 1 st A B i 2 nd A B i 2
11 10 sumeq2sdv x = A B i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st A B i 2 nd A B i 2
12 11 eqeq1d x = A B i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2 i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st y i 2 nd y i 2
13 4 12 anbi12d x = A B x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2 A B 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st y i 2 nd y i 2
14 13 rexbidv x = A B n x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2 n A B 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st y i 2 nd y i 2
15 eleq1 y = C D y 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n
16 15 anbi2d y = C D A B 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n
17 fveq2 y = C D 1 st y = 1 st C D
18 17 fveq1d y = C D 1 st y i = 1 st C D i
19 fveq2 y = C D 2 nd y = 2 nd C D
20 19 fveq1d y = C D 2 nd y i = 2 nd C D i
21 18 20 oveq12d y = C D 1 st y i 2 nd y i = 1 st C D i 2 nd C D i
22 21 oveq1d y = C D 1 st y i 2 nd y i 2 = 1 st C D i 2 nd C D i 2
23 22 sumeq2sdv y = C D i = 1 n 1 st y i 2 nd y i 2 = i = 1 n 1 st C D i 2 nd C D i 2
24 23 eqeq2d y = C D i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st y i 2 nd y i 2 i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2
25 16 24 anbi12d y = C D A B 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st y i 2 nd y i 2 A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2
26 25 rexbidv y = C D n A B 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st y i 2 nd y i 2 n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2
27 df-cgr Cgr = x y | n x 𝔼 n × 𝔼 n y 𝔼 n × 𝔼 n i = 1 n 1 st x i 2 nd x i 2 = i = 1 n 1 st y i 2 nd y i 2
28 1 2 14 26 27 brab A B Cgr C D n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2
29 opelxp2 C D 𝔼 n × 𝔼 n D 𝔼 n
30 29 ad2antll A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n D 𝔼 n
31 simplrr A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n D 𝔼 N
32 eedimeq D 𝔼 n D 𝔼 N n = N
33 30 31 32 syl2anc A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n n = N
34 33 adantlr A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n n = N
35 oveq2 n = N 1 n = 1 N
36 35 sumeq1d n = N i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 N 1 st A B i 2 nd A B i 2
37 35 sumeq1d n = N i = 1 n 1 st C D i 2 nd C D i 2 = i = 1 N 1 st C D i 2 nd C D i 2
38 36 37 eqeq12d n = N i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2 i = 1 N 1 st A B i 2 nd A B i 2 = i = 1 N 1 st C D i 2 nd C D i 2
39 34 38 syl A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2 i = 1 N 1 st A B i 2 nd A B i 2 = i = 1 N 1 st C D i 2 nd C D i 2
40 op1stg A 𝔼 N B 𝔼 N 1 st A B = A
41 40 fveq1d A 𝔼 N B 𝔼 N 1 st A B i = A i
42 op2ndg A 𝔼 N B 𝔼 N 2 nd A B = B
43 42 fveq1d A 𝔼 N B 𝔼 N 2 nd A B i = B i
44 41 43 oveq12d A 𝔼 N B 𝔼 N 1 st A B i 2 nd A B i = A i B i
45 44 oveq1d A 𝔼 N B 𝔼 N 1 st A B i 2 nd A B i 2 = A i B i 2
46 45 sumeq2sdv A 𝔼 N B 𝔼 N i = 1 N 1 st A B i 2 nd A B i 2 = i = 1 N A i B i 2
47 op1stg C 𝔼 N D 𝔼 N 1 st C D = C
48 47 fveq1d C 𝔼 N D 𝔼 N 1 st C D i = C i
49 op2ndg C 𝔼 N D 𝔼 N 2 nd C D = D
50 49 fveq1d C 𝔼 N D 𝔼 N 2 nd C D i = D i
51 48 50 oveq12d C 𝔼 N D 𝔼 N 1 st C D i 2 nd C D i = C i D i
52 51 oveq1d C 𝔼 N D 𝔼 N 1 st C D i 2 nd C D i 2 = C i D i 2
53 52 sumeq2sdv C 𝔼 N D 𝔼 N i = 1 N 1 st C D i 2 nd C D i 2 = i = 1 N C i D i 2
54 46 53 eqeqan12d A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N i = 1 N 1 st A B i 2 nd A B i 2 = i = 1 N 1 st C D i 2 nd C D i 2 i = 1 N A i B i 2 = i = 1 N C i D i 2
55 54 ad2antrr A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 N 1 st A B i 2 nd A B i 2 = i = 1 N 1 st C D i 2 nd C D i 2 i = 1 N A i B i 2 = i = 1 N C i D i 2
56 39 55 bitrd A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2 i = 1 N A i B i 2 = i = 1 N C i D i 2
57 56 biimpd A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2 i = 1 N A i B i 2 = i = 1 N C i D i 2
58 57 expimpd A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2 i = 1 N A i B i 2 = i = 1 N C i D i 2
59 58 rexlimdva A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2 i = 1 N A i B i 2 = i = 1 N C i D i 2
60 eleenn D 𝔼 N N
61 60 ad2antll A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
62 opelxpi A 𝔼 N B 𝔼 N A B 𝔼 N × 𝔼 N
63 opelxpi C 𝔼 N D 𝔼 N C D 𝔼 N × 𝔼 N
64 62 63 anim12i A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N
65 64 adantr A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N i = 1 N A i B i 2 = i = 1 N C i D i 2 A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N
66 54 biimpar A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N i = 1 N A i B i 2 = i = 1 N C i D i 2 i = 1 N 1 st A B i 2 nd A B i 2 = i = 1 N 1 st C D i 2 nd C D i 2
67 65 66 jca A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N i = 1 N A i B i 2 = i = 1 N C i D i 2 A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N i = 1 N 1 st A B i 2 nd A B i 2 = i = 1 N 1 st C D i 2 nd C D i 2
68 fveq2 n = N 𝔼 n = 𝔼 N
69 68 sqxpeqd n = N 𝔼 n × 𝔼 n = 𝔼 N × 𝔼 N
70 69 eleq2d n = N A B 𝔼 n × 𝔼 n A B 𝔼 N × 𝔼 N
71 69 eleq2d n = N C D 𝔼 n × 𝔼 n C D 𝔼 N × 𝔼 N
72 70 71 anbi12d n = N A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N
73 72 38 anbi12d n = N A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2 A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N i = 1 N 1 st A B i 2 nd A B i 2 = i = 1 N 1 st C D i 2 nd C D i 2
74 73 rspcev N A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N i = 1 N 1 st A B i 2 nd A B i 2 = i = 1 N 1 st C D i 2 nd C D i 2 n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2
75 67 74 sylan2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N i = 1 N A i B i 2 = i = 1 N C i D i 2 n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2
76 75 exp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N i = 1 N A i B i 2 = i = 1 N C i D i 2 n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2
77 61 76 mpcom A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N i = 1 N A i B i 2 = i = 1 N C i D i 2 n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2
78 59 77 impbid A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n i = 1 n 1 st A B i 2 nd A B i 2 = i = 1 n 1 st C D i 2 nd C D i 2 i = 1 N A i B i 2 = i = 1 N C i D i 2
79 28 78 syl5bb A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D i = 1 N A i B i 2 = i = 1 N C i D i 2