Metamath Proof Explorer


Theorem brcgr

Description: The binary relation form of the congruence predicate. The statement <. A , B >. Cgr <. C , D >. should be read informally as "the N dimensional point A is as far from B as C is from D , or "the line segment A B is congruent to the line segment C D . This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion brcgr A𝔼NB𝔼NC𝔼ND𝔼NABCgrCDi=1NAiBi2=i=1NCiDi2

Proof

Step Hyp Ref Expression
1 opex ABV
2 opex CDV
3 eleq1 x=ABx𝔼n×𝔼nAB𝔼n×𝔼n
4 3 anbi1d x=ABx𝔼n×𝔼ny𝔼n×𝔼nAB𝔼n×𝔼ny𝔼n×𝔼n
5 fveq2 x=AB1stx=1stAB
6 5 fveq1d x=AB1stxi=1stABi
7 fveq2 x=AB2ndx=2ndAB
8 7 fveq1d x=AB2ndxi=2ndABi
9 6 8 oveq12d x=AB1stxi2ndxi=1stABi2ndABi
10 9 oveq1d x=AB1stxi2ndxi2=1stABi2ndABi2
11 10 sumeq2sdv x=ABi=1n1stxi2ndxi2=i=1n1stABi2ndABi2
12 11 eqeq1d x=ABi=1n1stxi2ndxi2=i=1n1styi2ndyi2i=1n1stABi2ndABi2=i=1n1styi2ndyi2
13 4 12 anbi12d x=ABx𝔼n×𝔼ny𝔼n×𝔼ni=1n1stxi2ndxi2=i=1n1styi2ndyi2AB𝔼n×𝔼ny𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1styi2ndyi2
14 13 rexbidv x=ABnx𝔼n×𝔼ny𝔼n×𝔼ni=1n1stxi2ndxi2=i=1n1styi2ndyi2nAB𝔼n×𝔼ny𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1styi2ndyi2
15 eleq1 y=CDy𝔼n×𝔼nCD𝔼n×𝔼n
16 15 anbi2d y=CDAB𝔼n×𝔼ny𝔼n×𝔼nAB𝔼n×𝔼nCD𝔼n×𝔼n
17 fveq2 y=CD1sty=1stCD
18 17 fveq1d y=CD1styi=1stCDi
19 fveq2 y=CD2ndy=2ndCD
20 19 fveq1d y=CD2ndyi=2ndCDi
21 18 20 oveq12d y=CD1styi2ndyi=1stCDi2ndCDi
22 21 oveq1d y=CD1styi2ndyi2=1stCDi2ndCDi2
23 22 sumeq2sdv y=CDi=1n1styi2ndyi2=i=1n1stCDi2ndCDi2
24 23 eqeq2d y=CDi=1n1stABi2ndABi2=i=1n1styi2ndyi2i=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2
25 16 24 anbi12d y=CDAB𝔼n×𝔼ny𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1styi2ndyi2AB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2
26 25 rexbidv y=CDnAB𝔼n×𝔼ny𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1styi2ndyi2nAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2
27 df-cgr Cgr=xy|nx𝔼n×𝔼ny𝔼n×𝔼ni=1n1stxi2ndxi2=i=1n1styi2ndyi2
28 1 2 14 26 27 brab ABCgrCDnAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2
29 opelxp2 CD𝔼n×𝔼nD𝔼n
30 29 ad2antll A𝔼NB𝔼NC𝔼ND𝔼NAB𝔼n×𝔼nCD𝔼n×𝔼nD𝔼n
31 simplrr A𝔼NB𝔼NC𝔼ND𝔼NAB𝔼n×𝔼nCD𝔼n×𝔼nD𝔼N
32 eedimeq D𝔼nD𝔼Nn=N
33 30 31 32 syl2anc A𝔼NB𝔼NC𝔼ND𝔼NAB𝔼n×𝔼nCD𝔼n×𝔼nn=N
34 33 adantlr A𝔼NB𝔼NC𝔼ND𝔼NnAB𝔼n×𝔼nCD𝔼n×𝔼nn=N
35 oveq2 n=N1n=1N
36 35 sumeq1d n=Ni=1n1stABi2ndABi2=i=1N1stABi2ndABi2
37 35 sumeq1d n=Ni=1n1stCDi2ndCDi2=i=1N1stCDi2ndCDi2
38 36 37 eqeq12d n=Ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2i=1N1stABi2ndABi2=i=1N1stCDi2ndCDi2
39 34 38 syl A𝔼NB𝔼NC𝔼ND𝔼NnAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2i=1N1stABi2ndABi2=i=1N1stCDi2ndCDi2
40 op1stg A𝔼NB𝔼N1stAB=A
41 40 fveq1d A𝔼NB𝔼N1stABi=Ai
42 op2ndg A𝔼NB𝔼N2ndAB=B
43 42 fveq1d A𝔼NB𝔼N2ndABi=Bi
44 41 43 oveq12d A𝔼NB𝔼N1stABi2ndABi=AiBi
45 44 oveq1d A𝔼NB𝔼N1stABi2ndABi2=AiBi2
46 45 sumeq2sdv A𝔼NB𝔼Ni=1N1stABi2ndABi2=i=1NAiBi2
47 op1stg C𝔼ND𝔼N1stCD=C
48 47 fveq1d C𝔼ND𝔼N1stCDi=Ci
49 op2ndg C𝔼ND𝔼N2ndCD=D
50 49 fveq1d C𝔼ND𝔼N2ndCDi=Di
51 48 50 oveq12d C𝔼ND𝔼N1stCDi2ndCDi=CiDi
52 51 oveq1d C𝔼ND𝔼N1stCDi2ndCDi2=CiDi2
53 52 sumeq2sdv C𝔼ND𝔼Ni=1N1stCDi2ndCDi2=i=1NCiDi2
54 46 53 eqeqan12d A𝔼NB𝔼NC𝔼ND𝔼Ni=1N1stABi2ndABi2=i=1N1stCDi2ndCDi2i=1NAiBi2=i=1NCiDi2
55 54 ad2antrr A𝔼NB𝔼NC𝔼ND𝔼NnAB𝔼n×𝔼nCD𝔼n×𝔼ni=1N1stABi2ndABi2=i=1N1stCDi2ndCDi2i=1NAiBi2=i=1NCiDi2
56 39 55 bitrd A𝔼NB𝔼NC𝔼ND𝔼NnAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2i=1NAiBi2=i=1NCiDi2
57 56 biimpd A𝔼NB𝔼NC𝔼ND𝔼NnAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2i=1NAiBi2=i=1NCiDi2
58 57 expimpd A𝔼NB𝔼NC𝔼ND𝔼NnAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2i=1NAiBi2=i=1NCiDi2
59 58 rexlimdva A𝔼NB𝔼NC𝔼ND𝔼NnAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2i=1NAiBi2=i=1NCiDi2
60 eleenn D𝔼NN
61 60 ad2antll A𝔼NB𝔼NC𝔼ND𝔼NN
62 opelxpi A𝔼NB𝔼NAB𝔼N×𝔼N
63 opelxpi C𝔼ND𝔼NCD𝔼N×𝔼N
64 62 63 anim12i A𝔼NB𝔼NC𝔼ND𝔼NAB𝔼N×𝔼NCD𝔼N×𝔼N
65 64 adantr A𝔼NB𝔼NC𝔼ND𝔼Ni=1NAiBi2=i=1NCiDi2AB𝔼N×𝔼NCD𝔼N×𝔼N
66 54 biimpar A𝔼NB𝔼NC𝔼ND𝔼Ni=1NAiBi2=i=1NCiDi2i=1N1stABi2ndABi2=i=1N1stCDi2ndCDi2
67 65 66 jca A𝔼NB𝔼NC𝔼ND𝔼Ni=1NAiBi2=i=1NCiDi2AB𝔼N×𝔼NCD𝔼N×𝔼Ni=1N1stABi2ndABi2=i=1N1stCDi2ndCDi2
68 fveq2 n=N𝔼n=𝔼N
69 68 sqxpeqd n=N𝔼n×𝔼n=𝔼N×𝔼N
70 69 eleq2d n=NAB𝔼n×𝔼nAB𝔼N×𝔼N
71 69 eleq2d n=NCD𝔼n×𝔼nCD𝔼N×𝔼N
72 70 71 anbi12d n=NAB𝔼n×𝔼nCD𝔼n×𝔼nAB𝔼N×𝔼NCD𝔼N×𝔼N
73 72 38 anbi12d n=NAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2AB𝔼N×𝔼NCD𝔼N×𝔼Ni=1N1stABi2ndABi2=i=1N1stCDi2ndCDi2
74 73 rspcev NAB𝔼N×𝔼NCD𝔼N×𝔼Ni=1N1stABi2ndABi2=i=1N1stCDi2ndCDi2nAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2
75 67 74 sylan2 NA𝔼NB𝔼NC𝔼ND𝔼Ni=1NAiBi2=i=1NCiDi2nAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2
76 75 exp32 NA𝔼NB𝔼NC𝔼ND𝔼Ni=1NAiBi2=i=1NCiDi2nAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2
77 61 76 mpcom A𝔼NB𝔼NC𝔼ND𝔼Ni=1NAiBi2=i=1NCiDi2nAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2
78 59 77 impbid A𝔼NB𝔼NC𝔼ND𝔼NnAB𝔼n×𝔼nCD𝔼n×𝔼ni=1n1stABi2ndABi2=i=1n1stCDi2ndCDi2i=1NAiBi2=i=1NCiDi2
79 28 78 bitrid A𝔼NB𝔼NC𝔼ND𝔼NABCgrCDi=1NAiBi2=i=1NCiDi2