Step |
Hyp |
Ref |
Expression |
1 |
|
opex |
|
2 |
|
opex |
|
3 |
|
eleq1 |
|
4 |
3
|
anbi1d |
|
5 |
|
fveq2 |
|
6 |
5
|
fveq1d |
|
7 |
|
fveq2 |
|
8 |
7
|
fveq1d |
|
9 |
6 8
|
oveq12d |
|
10 |
9
|
oveq1d |
|
11 |
10
|
sumeq2sdv |
|
12 |
11
|
eqeq1d |
|
13 |
4 12
|
anbi12d |
|
14 |
13
|
rexbidv |
|
15 |
|
eleq1 |
|
16 |
15
|
anbi2d |
|
17 |
|
fveq2 |
|
18 |
17
|
fveq1d |
|
19 |
|
fveq2 |
|
20 |
19
|
fveq1d |
|
21 |
18 20
|
oveq12d |
|
22 |
21
|
oveq1d |
|
23 |
22
|
sumeq2sdv |
|
24 |
23
|
eqeq2d |
|
25 |
16 24
|
anbi12d |
|
26 |
25
|
rexbidv |
|
27 |
|
df-cgr |
|
28 |
1 2 14 26 27
|
brab |
|
29 |
|
opelxp2 |
|
30 |
29
|
ad2antll |
|
31 |
|
simplrr |
|
32 |
|
eedimeq |
|
33 |
30 31 32
|
syl2anc |
|
34 |
33
|
adantlr |
|
35 |
|
oveq2 |
|
36 |
35
|
sumeq1d |
|
37 |
35
|
sumeq1d |
|
38 |
36 37
|
eqeq12d |
|
39 |
34 38
|
syl |
|
40 |
|
op1stg |
|
41 |
40
|
fveq1d |
|
42 |
|
op2ndg |
|
43 |
42
|
fveq1d |
|
44 |
41 43
|
oveq12d |
|
45 |
44
|
oveq1d |
|
46 |
45
|
sumeq2sdv |
|
47 |
|
op1stg |
|
48 |
47
|
fveq1d |
|
49 |
|
op2ndg |
|
50 |
49
|
fveq1d |
|
51 |
48 50
|
oveq12d |
|
52 |
51
|
oveq1d |
|
53 |
52
|
sumeq2sdv |
|
54 |
46 53
|
eqeqan12d |
|
55 |
54
|
ad2antrr |
|
56 |
39 55
|
bitrd |
|
57 |
56
|
biimpd |
|
58 |
57
|
expimpd |
|
59 |
58
|
rexlimdva |
|
60 |
|
eleenn |
|
61 |
60
|
ad2antll |
|
62 |
|
opelxpi |
|
63 |
|
opelxpi |
|
64 |
62 63
|
anim12i |
|
65 |
64
|
adantr |
|
66 |
54
|
biimpar |
|
67 |
65 66
|
jca |
|
68 |
|
fveq2 |
|
69 |
68
|
sqxpeqd |
|
70 |
69
|
eleq2d |
|
71 |
69
|
eleq2d |
|
72 |
70 71
|
anbi12d |
|
73 |
72 38
|
anbi12d |
|
74 |
73
|
rspcev |
|
75 |
67 74
|
sylan2 |
|
76 |
75
|
exp32 |
|
77 |
61 76
|
mpcom |
|
78 |
59 77
|
impbid |
|
79 |
28 78
|
syl5bb |
|