| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opex |
|
| 2 |
|
opex |
|
| 3 |
|
eleq1 |
|
| 4 |
3
|
anbi1d |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
fveq1d |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
fveq1d |
|
| 9 |
6 8
|
oveq12d |
|
| 10 |
9
|
oveq1d |
|
| 11 |
10
|
sumeq2sdv |
|
| 12 |
11
|
eqeq1d |
|
| 13 |
4 12
|
anbi12d |
|
| 14 |
13
|
rexbidv |
|
| 15 |
|
eleq1 |
|
| 16 |
15
|
anbi2d |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
fveq1d |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
fveq1d |
|
| 21 |
18 20
|
oveq12d |
|
| 22 |
21
|
oveq1d |
|
| 23 |
22
|
sumeq2sdv |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
16 24
|
anbi12d |
|
| 26 |
25
|
rexbidv |
|
| 27 |
|
df-cgr |
|
| 28 |
1 2 14 26 27
|
brab |
|
| 29 |
|
opelxp2 |
|
| 30 |
29
|
ad2antll |
|
| 31 |
|
simplrr |
|
| 32 |
|
eedimeq |
|
| 33 |
30 31 32
|
syl2anc |
|
| 34 |
33
|
adantlr |
|
| 35 |
|
oveq2 |
|
| 36 |
35
|
sumeq1d |
|
| 37 |
35
|
sumeq1d |
|
| 38 |
36 37
|
eqeq12d |
|
| 39 |
34 38
|
syl |
|
| 40 |
|
op1stg |
|
| 41 |
40
|
fveq1d |
|
| 42 |
|
op2ndg |
|
| 43 |
42
|
fveq1d |
|
| 44 |
41 43
|
oveq12d |
|
| 45 |
44
|
oveq1d |
|
| 46 |
45
|
sumeq2sdv |
|
| 47 |
|
op1stg |
|
| 48 |
47
|
fveq1d |
|
| 49 |
|
op2ndg |
|
| 50 |
49
|
fveq1d |
|
| 51 |
48 50
|
oveq12d |
|
| 52 |
51
|
oveq1d |
|
| 53 |
52
|
sumeq2sdv |
|
| 54 |
46 53
|
eqeqan12d |
|
| 55 |
54
|
ad2antrr |
|
| 56 |
39 55
|
bitrd |
|
| 57 |
56
|
biimpd |
|
| 58 |
57
|
expimpd |
|
| 59 |
58
|
rexlimdva |
|
| 60 |
|
eleenn |
|
| 61 |
60
|
ad2antll |
|
| 62 |
|
opelxpi |
|
| 63 |
|
opelxpi |
|
| 64 |
62 63
|
anim12i |
|
| 65 |
64
|
adantr |
|
| 66 |
54
|
biimpar |
|
| 67 |
65 66
|
jca |
|
| 68 |
|
fveq2 |
|
| 69 |
68
|
sqxpeqd |
|
| 70 |
69
|
eleq2d |
|
| 71 |
69
|
eleq2d |
|
| 72 |
70 71
|
anbi12d |
|
| 73 |
72 38
|
anbi12d |
|
| 74 |
73
|
rspcev |
|
| 75 |
67 74
|
sylan2 |
|
| 76 |
75
|
exp32 |
|
| 77 |
61 76
|
mpcom |
|
| 78 |
59 77
|
impbid |
|
| 79 |
28 78
|
bitrid |
|