Description: The set of well-orders of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(b) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 31-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | canthwe.1 | |
|
Assertion | canthwe | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canthwe.1 | |
|
2 | simp1 | |
|
3 | velpw | |
|
4 | 2 3 | sylibr | |
5 | simp2 | |
|
6 | xpss12 | |
|
7 | 2 2 6 | syl2anc | |
8 | 5 7 | sstrd | |
9 | velpw | |
|
10 | 8 9 | sylibr | |
11 | 4 10 | jca | |
12 | 11 | ssopab2i | |
13 | df-xp | |
|
14 | 12 1 13 | 3sstr4i | |
15 | pwexg | |
|
16 | sqxpexg | |
|
17 | 16 | pwexd | |
18 | 15 17 | xpexd | |
19 | ssexg | |
|
20 | 14 18 19 | sylancr | |
21 | simpr | |
|
22 | 21 | snssd | |
23 | 0ss | |
|
24 | 23 | a1i | |
25 | rel0 | |
|
26 | br0 | |
|
27 | wesn | |
|
28 | 26 27 | mpbiri | |
29 | 25 28 | mp1i | |
30 | vsnex | |
|
31 | 0ex | |
|
32 | simpl | |
|
33 | 32 | sseq1d | |
34 | simpr | |
|
35 | 32 | sqxpeqd | |
36 | 34 35 | sseq12d | |
37 | weeq2 | |
|
38 | weeq1 | |
|
39 | 37 38 | sylan9bb | |
40 | 33 36 39 | 3anbi123d | |
41 | 30 31 40 | opelopaba | |
42 | 22 24 29 41 | syl3anbrc | |
43 | 42 1 | eleqtrrdi | |
44 | 43 | ex | |
45 | eqid | |
|
46 | vsnex | |
|
47 | 46 31 | opth2 | |
48 | 45 47 | mpbiran2 | |
49 | sneqbg | |
|
50 | 49 | elv | |
51 | 48 50 | bitri | |
52 | 51 | 2a1i | |
53 | 44 52 | dom2d | |
54 | 20 53 | mpd | |
55 | eqid | |
|
56 | 55 | fpwwe2cbv | |
57 | eqid | |
|
58 | eqid | |
|
59 | 1 56 57 58 | canthwelem | |
60 | f1of1 | |
|
61 | 59 60 | nsyl | |
62 | 61 | nexdv | |
63 | ensym | |
|
64 | bren | |
|
65 | 63 64 | sylib | |
66 | 62 65 | nsyl | |
67 | brsdom | |
|
68 | 54 66 67 | sylanbrc | |