Metamath Proof Explorer


Theorem canthwe

Description: The set of well-orders of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(b) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypothesis canthwe.1 O=xr|xArx×xrWex
Assertion canthwe AVAO

Proof

Step Hyp Ref Expression
1 canthwe.1 O=xr|xArx×xrWex
2 simp1 xArx×xrWexxA
3 velpw x𝒫AxA
4 2 3 sylibr xArx×xrWexx𝒫A
5 simp2 xArx×xrWexrx×x
6 xpss12 xAxAx×xA×A
7 2 2 6 syl2anc xArx×xrWexx×xA×A
8 5 7 sstrd xArx×xrWexrA×A
9 velpw r𝒫A×ArA×A
10 8 9 sylibr xArx×xrWexr𝒫A×A
11 4 10 jca xArx×xrWexx𝒫Ar𝒫A×A
12 11 ssopab2i xr|xArx×xrWexxr|x𝒫Ar𝒫A×A
13 df-xp 𝒫A×𝒫A×A=xr|x𝒫Ar𝒫A×A
14 12 1 13 3sstr4i O𝒫A×𝒫A×A
15 pwexg AV𝒫AV
16 sqxpexg AVA×AV
17 16 pwexd AV𝒫A×AV
18 15 17 xpexd AV𝒫A×𝒫A×AV
19 ssexg O𝒫A×𝒫A×A𝒫A×𝒫A×AVOV
20 14 18 19 sylancr AVOV
21 simpr AVuAuA
22 21 snssd AVuAuA
23 0ss u×u
24 23 a1i AVuAu×u
25 rel0 Rel
26 br0 ¬uu
27 wesn RelWeu¬uu
28 26 27 mpbiri RelWeu
29 25 28 mp1i AVuAWeu
30 vsnex uV
31 0ex V
32 simpl x=ur=x=u
33 32 sseq1d x=ur=xAuA
34 simpr x=ur=r=
35 32 sqxpeqd x=ur=x×x=u×u
36 34 35 sseq12d x=ur=rx×xu×u
37 weeq2 x=urWexrWeu
38 weeq1 r=rWeuWeu
39 37 38 sylan9bb x=ur=rWexWeu
40 33 36 39 3anbi123d x=ur=xArx×xrWexuAu×uWeu
41 30 31 40 opelopaba uxr|xArx×xrWexuAu×uWeu
42 22 24 29 41 syl3anbrc AVuAuxr|xArx×xrWex
43 42 1 eleqtrrdi AVuAuO
44 43 ex AVuAuO
45 eqid =
46 vsnex vV
47 46 31 opth2 u=vu=v=
48 45 47 mpbiran2 u=vu=v
49 sneqbg uVu=vu=v
50 49 elv u=vu=v
51 48 50 bitri u=vu=v
52 51 2a1i AVuAvAu=vu=v
53 44 52 dom2d AVOVAO
54 20 53 mpd AVAO
55 eqid as|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=z=as|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=z
56 55 fpwwe2cbv as|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=z=xr|xArx×xrWexyx[˙r-1y/w]˙wfrw×w=y
57 eqid domas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=z=domas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=z
58 eqid as|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=zdomas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=z-1domas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=zfas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=zdomas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=z=as|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=zdomas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=z-1domas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=zfas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=zdomas|aAsa×asWeaza[˙s-1z/v]˙vfsv×v=z
59 1 56 57 58 canthwelem AV¬f:O1-1A
60 f1of1 f:O1-1 ontoAf:O1-1A
61 59 60 nsyl AV¬f:O1-1 ontoA
62 61 nexdv AV¬ff:O1-1 ontoA
63 ensym AOOA
64 bren OAff:O1-1 ontoA
65 63 64 sylib AOff:O1-1 ontoA
66 62 65 nsyl AV¬AO
67 brsdom AOAO¬AO
68 54 66 67 sylanbrc AVAO