Metamath Proof Explorer


Theorem carageniuncl

Description: The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of Fremlin1 p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses carageniuncl.o φ O OutMeas
carageniuncl.s S = CaraGen O
carageniuncl.3 φ M
carageniuncl.z Z = M
carageniuncl.e φ E : Z S
Assertion carageniuncl φ n Z E n S

Proof

Step Hyp Ref Expression
1 carageniuncl.o φ O OutMeas
2 carageniuncl.s S = CaraGen O
3 carageniuncl.3 φ M
4 carageniuncl.z Z = M
5 carageniuncl.e φ E : Z S
6 eqid dom O = dom O
7 5 ffvelrnda φ n Z E n S
8 elssuni E n S E n S
9 7 8 syl φ n Z E n S
10 1 2 caragenuni φ S = dom O
11 10 adantr φ n Z S = dom O
12 9 11 sseqtrd φ n Z E n dom O
13 12 ralrimiva φ n Z E n dom O
14 iunss n Z E n dom O n Z E n dom O
15 13 14 sylibr φ n Z E n dom O
16 4 fvexi Z V
17 fvex E n V
18 16 17 iunex n Z E n V
19 18 a1i φ n Z E n V
20 elpwg n Z E n V n Z E n 𝒫 dom O n Z E n dom O
21 19 20 syl φ n Z E n 𝒫 dom O n Z E n dom O
22 15 21 mpbird φ n Z E n 𝒫 dom O
23 iccssxr 0 +∞ *
24 1 adantr φ a 𝒫 dom O O OutMeas
25 elpwi a 𝒫 dom O a dom O
26 ssinss1 a dom O a n Z E n dom O
27 25 26 syl a 𝒫 dom O a n Z E n dom O
28 27 adantl φ a 𝒫 dom O a n Z E n dom O
29 24 6 28 omecl φ a 𝒫 dom O O a n Z E n 0 +∞
30 23 29 sselid φ a 𝒫 dom O O a n Z E n *
31 25 adantl φ a 𝒫 dom O a dom O
32 31 ssdifssd φ a 𝒫 dom O a n Z E n dom O
33 24 6 32 omecl φ a 𝒫 dom O O a n Z E n 0 +∞
34 23 33 sselid φ a 𝒫 dom O O a n Z E n *
35 30 34 xaddcld φ a 𝒫 dom O O a n Z E n + 𝑒 O a n Z E n *
36 24 6 31 omecl φ a 𝒫 dom O O a 0 +∞
37 23 36 sselid φ a 𝒫 dom O O a *
38 pnfge O a n Z E n + 𝑒 O a n Z E n * O a n Z E n + 𝑒 O a n Z E n +∞
39 35 38 syl φ a 𝒫 dom O O a n Z E n + 𝑒 O a n Z E n +∞
40 39 adantr φ a 𝒫 dom O O a = +∞ O a n Z E n + 𝑒 O a n Z E n +∞
41 id O a = +∞ O a = +∞
42 41 eqcomd O a = +∞ +∞ = O a
43 42 adantl φ a 𝒫 dom O O a = +∞ +∞ = O a
44 40 43 breqtrd φ a 𝒫 dom O O a = +∞ O a n Z E n + 𝑒 O a n Z E n O a
45 simpl φ a 𝒫 dom O ¬ O a = +∞ φ a 𝒫 dom O
46 rge0ssre 0 +∞
47 0xr 0 *
48 47 a1i φ a 𝒫 dom O ¬ O a = +∞ 0 *
49 pnfxr +∞ *
50 49 a1i φ a 𝒫 dom O ¬ O a = +∞ +∞ *
51 45 36 syl φ a 𝒫 dom O ¬ O a = +∞ O a 0 +∞
52 41 necon3bi ¬ O a = +∞ O a +∞
53 52 adantl φ a 𝒫 dom O ¬ O a = +∞ O a +∞
54 48 50 51 53 eliccelicod φ a 𝒫 dom O ¬ O a = +∞ O a 0 +∞
55 46 54 sselid φ a 𝒫 dom O ¬ O a = +∞ O a
56 24 ad2antrr φ a 𝒫 dom O O a x + O OutMeas
57 31 ad2antrr φ a 𝒫 dom O O a x + a dom O
58 simpr φ a 𝒫 dom O O a O a
59 58 adantr φ a 𝒫 dom O O a x + O a
60 3 ad3antrrr φ a 𝒫 dom O O a x + M
61 5 ad3antrrr φ a 𝒫 dom O O a x + E : Z S
62 simpr φ a 𝒫 dom O O a x + x +
63 eqid n Z i = M n E i = n Z i = M n E i
64 fveq2 m = n E m = E n
65 oveq2 m = n M ..^ m = M ..^ n
66 65 iuneq1d m = n i M ..^ m E i = i M ..^ n E i
67 64 66 difeq12d m = n E m i M ..^ m E i = E n i M ..^ n E i
68 67 cbvmptv m Z E m i M ..^ m E i = n Z E n i M ..^ n E i
69 56 2 6 57 59 60 4 61 62 63 68 carageniuncllem2 φ a 𝒫 dom O O a x + O a n Z E n + 𝑒 O a n Z E n O a + x
70 69 ralrimiva φ a 𝒫 dom O O a x + O a n Z E n + 𝑒 O a n Z E n O a + x
71 35 adantr φ a 𝒫 dom O O a O a n Z E n + 𝑒 O a n Z E n *
72 xralrple O a n Z E n + 𝑒 O a n Z E n * O a O a n Z E n + 𝑒 O a n Z E n O a x + O a n Z E n + 𝑒 O a n Z E n O a + x
73 71 58 72 syl2anc φ a 𝒫 dom O O a O a n Z E n + 𝑒 O a n Z E n O a x + O a n Z E n + 𝑒 O a n Z E n O a + x
74 70 73 mpbird φ a 𝒫 dom O O a O a n Z E n + 𝑒 O a n Z E n O a
75 45 55 74 syl2anc φ a 𝒫 dom O ¬ O a = +∞ O a n Z E n + 𝑒 O a n Z E n O a
76 44 75 pm2.61dan φ a 𝒫 dom O O a n Z E n + 𝑒 O a n Z E n O a
77 24 6 31 omelesplit φ a 𝒫 dom O O a O a n Z E n + 𝑒 O a n Z E n
78 35 37 76 77 xrletrid φ a 𝒫 dom O O a n Z E n + 𝑒 O a n Z E n = O a
79 1 6 2 22 78 carageneld φ n Z E n S