Metamath Proof Explorer


Theorem caucvgb

Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of Gleason p. 180. (Contributed by Mario Carneiro, 15-Feb-2014)

Ref Expression
Hypothesis caucvgb.1 Z=M
Assertion caucvgb MFVFdomx+jZkjFkFkFj<x

Proof

Step Hyp Ref Expression
1 caucvgb.1 Z=M
2 eldm2g FdomFdommFm
3 2 ibi FdommFm
4 df-br FmFm
5 simpll MFVFmM
6 1rp 1+
7 6 a1i MFVFm1+
8 eqidd MFVFmkZFk=Fk
9 simpr MFVFmFm
10 1 5 7 8 9 climi MFVFmnZknFkFkm<1
11 simpl FkFkm<1Fk
12 11 ralimi knFkFkm<1knFk
13 12 reximi nZknFkFkm<1nZknFk
14 10 13 syl MFVFmnZknFk
15 14 ex MFVFmnZknFk
16 4 15 biimtrrid MFVFmnZknFk
17 16 exlimdv MFVmFmnZknFk
18 3 17 syl5 MFVFdomnZknFk
19 fveq2 j=nj=n
20 19 raleqdv j=nkjFkknFk
21 20 cbvrexvw jZkjFknZknFk
22 21 a1i x=1jZkjFknZknFk
23 simpl FkFkFj<xFk
24 23 ralimi kjFkFkFj<xkjFk
25 24 reximi jZkjFkFkFj<xjZkjFk
26 25 ralimi x+jZkjFkFkFj<xx+jZkjFk
27 6 a1i x+jZkjFkFkFj<x1+
28 22 26 27 rspcdva x+jZkjFkFkFj<xnZknFk
29 28 a1i MFVx+jZkjFkFkFj<xnZknFk
30 eluzelz nMn
31 30 1 eleq2s nZn
32 eqid n=n
33 32 climcau nFdomx+jnkjFkFj<x
34 31 33 sylan nZFdomx+jnkjFkFj<x
35 32 r19.29uz knFkjnkjFkFj<xjnkjFkFkFj<x
36 35 ex knFkjnkjFkFj<xjnkjFkFkFj<x
37 36 ralimdv knFkx+jnkjFkFj<xx+jnkjFkFkFj<x
38 34 37 mpan9 nZFdomknFkx+jnkjFkFkFj<x
39 38 an32s nZknFkFdomx+jnkjFkFkFj<x
40 39 adantll MFVnZknFkFdomx+jnkjFkFkFj<x
41 simplrr FVnZknFkx+jnkjFkFkFj<xknFk
42 fveq2 k=mFk=Fm
43 42 eleq1d k=mFkFm
44 43 rspccva knFkmnFm
45 41 44 sylan FVnZknFkx+jnkjFkFkFj<xmnFm
46 simpr FkFkFj<xFkFj<x
47 46 ralimi kjFkFkFj<xkjFkFj<x
48 42 fvoveq1d k=mFkFj=FmFj
49 48 breq1d k=mFkFj<xFmFj<x
50 49 cbvralvw kjFkFj<xmjFmFj<x
51 47 50 sylib kjFkFkFj<xmjFmFj<x
52 51 reximi jnkjFkFkFj<xjnmjFmFj<x
53 52 ralimi x+jnkjFkFkFj<xx+jnmjFmFj<x
54 53 adantl FVnZknFkx+jnkjFkFkFj<xx+jnmjFmFj<x
55 fveq2 j=ij=i
56 fveq2 j=iFj=Fi
57 56 oveq2d j=iFmFj=FmFi
58 57 fveq2d j=iFmFj=FmFi
59 58 breq1d j=iFmFj<xFmFi<x
60 55 59 raleqbidv j=imjFmFj<xmiFmFi<x
61 60 cbvrexvw jnmjFmFj<xinmiFmFi<x
62 breq2 x=yFmFi<xFmFi<y
63 62 rexralbidv x=yinmiFmFi<xinmiFmFi<y
64 61 63 bitrid x=yjnmjFmFj<xinmiFmFi<y
65 64 cbvralvw x+jnmjFmFj<xy+inmiFmFi<y
66 54 65 sylib FVnZknFkx+jnkjFkFkFj<xy+inmiFmFi<y
67 simpll FVnZknFkx+jnkjFkFkFj<xFV
68 32 45 66 67 caucvg FVnZknFkx+jnkjFkFkFj<xFdom
69 68 adantlll MFVnZknFkx+jnkjFkFkFj<xFdom
70 40 69 impbida MFVnZknFkFdomx+jnkjFkFkFj<x
71 1 32 cau4 nZx+jZkjFkFkFj<xx+jnkjFkFkFj<x
72 71 ad2antrl MFVnZknFkx+jZkjFkFkFj<xx+jnkjFkFkFj<x
73 70 72 bitr4d MFVnZknFkFdomx+jZkjFkFkFj<x
74 73 rexlimdvaa MFVnZknFkFdomx+jZkjFkFkFj<x
75 18 29 74 pm5.21ndd MFVFdomx+jZkjFkFkFj<x