Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn10.b |
|
2 |
|
cdlemn10.l |
|
3 |
|
cdlemn10.j |
|
4 |
|
cdlemn10.a |
|
5 |
|
cdlemn10.h |
|
6 |
|
cdlemn10.t |
|
7 |
|
cdlemn10.r |
|
8 |
|
simp1l |
|
9 |
8
|
hllatd |
|
10 |
|
simp22l |
|
11 |
1 4
|
atbase |
|
12 |
10 11
|
syl |
|
13 |
|
simp21l |
|
14 |
1 3 4
|
hlatjcl |
|
15 |
8 13 10 14
|
syl3anc |
|
16 |
1 4
|
atbase |
|
17 |
13 16
|
syl |
|
18 |
|
simp23l |
|
19 |
1 3
|
latjcl |
|
20 |
9 17 18 19
|
syl3anc |
|
21 |
2 3 4
|
hlatlej2 |
|
22 |
8 13 10 21
|
syl3anc |
|
23 |
|
simp1r |
|
24 |
1 5
|
lhpbase |
|
25 |
23 24
|
syl |
|
26 |
2 3 4
|
hlatlej1 |
|
27 |
8 13 10 26
|
syl3anc |
|
28 |
|
eqid |
|
29 |
1 2 3 28 4
|
atmod3i1 |
|
30 |
8 13 15 25 27 29
|
syl131anc |
|
31 |
|
simp1 |
|
32 |
|
simp21 |
|
33 |
|
eqid |
|
34 |
2 3 33 4 5
|
lhpjat2 |
|
35 |
31 32 34
|
syl2anc |
|
36 |
35
|
oveq2d |
|
37 |
|
hlol |
|
38 |
8 37
|
syl |
|
39 |
1 28 33
|
olm11 |
|
40 |
38 15 39
|
syl2anc |
|
41 |
30 36 40
|
3eqtrrd |
|
42 |
|
simp31 |
|
43 |
2 3 28 4 5 6 7
|
trlval2 |
|
44 |
31 42 32 43
|
syl3anc |
|
45 |
|
simp32 |
|
46 |
45
|
oveq2d |
|
47 |
46
|
oveq1d |
|
48 |
44 47
|
eqtrd |
|
49 |
|
simp33 |
|
50 |
48 49
|
eqbrtrrd |
|
51 |
1 28
|
latmcl |
|
52 |
9 15 25 51
|
syl3anc |
|
53 |
1 2 3
|
latjlej2 |
|
54 |
9 52 18 17 53
|
syl13anc |
|
55 |
50 54
|
mpd |
|
56 |
41 55
|
eqbrtrd |
|
57 |
1 2 9 12 15 20 22 56
|
lattrd |
|