Metamath Proof Explorer


Theorem cdlemn10

Description: Part of proof of Lemma N of Crawley p. 121 line 36. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn10.b B = Base K
cdlemn10.l ˙ = K
cdlemn10.j ˙ = join K
cdlemn10.a A = Atoms K
cdlemn10.h H = LHyp K
cdlemn10.t T = LTrn K W
cdlemn10.r R = trL K W
Assertion cdlemn10 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X S ˙ Q ˙ X

Proof

Step Hyp Ref Expression
1 cdlemn10.b B = Base K
2 cdlemn10.l ˙ = K
3 cdlemn10.j ˙ = join K
4 cdlemn10.a A = Atoms K
5 cdlemn10.h H = LHyp K
6 cdlemn10.t T = LTrn K W
7 cdlemn10.r R = trL K W
8 simp1l K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X K HL
9 8 hllatd K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X K Lat
10 simp22l K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X S A
11 1 4 atbase S A S B
12 10 11 syl K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X S B
13 simp21l K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q A
14 1 3 4 hlatjcl K HL Q A S A Q ˙ S B
15 8 13 10 14 syl3anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ S B
16 1 4 atbase Q A Q B
17 13 16 syl K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q B
18 simp23l K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X X B
19 1 3 latjcl K Lat Q B X B Q ˙ X B
20 9 17 18 19 syl3anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ X B
21 2 3 4 hlatlej2 K HL Q A S A S ˙ Q ˙ S
22 8 13 10 21 syl3anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X S ˙ Q ˙ S
23 simp1r K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X W H
24 1 5 lhpbase W H W B
25 23 24 syl K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X W B
26 2 3 4 hlatlej1 K HL Q A S A Q ˙ Q ˙ S
27 8 13 10 26 syl3anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ Q ˙ S
28 eqid meet K = meet K
29 1 2 3 28 4 atmod3i1 K HL Q A Q ˙ S B W B Q ˙ Q ˙ S Q ˙ Q ˙ S meet K W = Q ˙ S meet K Q ˙ W
30 8 13 15 25 27 29 syl131anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ Q ˙ S meet K W = Q ˙ S meet K Q ˙ W
31 simp1 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X K HL W H
32 simp21 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q A ¬ Q ˙ W
33 eqid 1. K = 1. K
34 2 3 33 4 5 lhpjat2 K HL W H Q A ¬ Q ˙ W Q ˙ W = 1. K
35 31 32 34 syl2anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ W = 1. K
36 35 oveq2d K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ S meet K Q ˙ W = Q ˙ S meet K 1. K
37 hlol K HL K OL
38 8 37 syl K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X K OL
39 1 28 33 olm11 K OL Q ˙ S B Q ˙ S meet K 1. K = Q ˙ S
40 38 15 39 syl2anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ S meet K 1. K = Q ˙ S
41 30 36 40 3eqtrrd K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ S = Q ˙ Q ˙ S meet K W
42 simp31 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X g T
43 2 3 28 4 5 6 7 trlval2 K HL W H g T Q A ¬ Q ˙ W R g = Q ˙ g Q meet K W
44 31 42 32 43 syl3anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X R g = Q ˙ g Q meet K W
45 simp32 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X g Q = S
46 45 oveq2d K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ g Q = Q ˙ S
47 46 oveq1d K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ g Q meet K W = Q ˙ S meet K W
48 44 47 eqtrd K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X R g = Q ˙ S meet K W
49 simp33 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X R g ˙ X
50 48 49 eqbrtrrd K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ S meet K W ˙ X
51 1 28 latmcl K Lat Q ˙ S B W B Q ˙ S meet K W B
52 9 15 25 51 syl3anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ S meet K W B
53 1 2 3 latjlej2 K Lat Q ˙ S meet K W B X B Q B Q ˙ S meet K W ˙ X Q ˙ Q ˙ S meet K W ˙ Q ˙ X
54 9 52 18 17 53 syl13anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ S meet K W ˙ X Q ˙ Q ˙ S meet K W ˙ Q ˙ X
55 50 54 mpd K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ Q ˙ S meet K W ˙ Q ˙ X
56 41 55 eqbrtrd K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X Q ˙ S ˙ Q ˙ X
57 1 2 9 12 15 20 22 56 lattrd K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W g T g Q = S R g ˙ X S ˙ Q ˙ X