Metamath Proof Explorer


Theorem cdlemn10

Description: Part of proof of Lemma N of Crawley p. 121 line 36. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn10.b B=BaseK
cdlemn10.l ˙=K
cdlemn10.j ˙=joinK
cdlemn10.a A=AtomsK
cdlemn10.h H=LHypK
cdlemn10.t T=LTrnKW
cdlemn10.r R=trLKW
Assertion cdlemn10 KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XS˙Q˙X

Proof

Step Hyp Ref Expression
1 cdlemn10.b B=BaseK
2 cdlemn10.l ˙=K
3 cdlemn10.j ˙=joinK
4 cdlemn10.a A=AtomsK
5 cdlemn10.h H=LHypK
6 cdlemn10.t T=LTrnKW
7 cdlemn10.r R=trLKW
8 simp1l KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XKHL
9 8 hllatd KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XKLat
10 simp22l KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XSA
11 1 4 atbase SASB
12 10 11 syl KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XSB
13 simp21l KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQA
14 1 3 4 hlatjcl KHLQASAQ˙SB
15 8 13 10 14 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙SB
16 1 4 atbase QAQB
17 13 16 syl KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQB
18 simp23l KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XXB
19 1 3 latjcl KLatQBXBQ˙XB
20 9 17 18 19 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙XB
21 2 3 4 hlatlej2 KHLQASAS˙Q˙S
22 8 13 10 21 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XS˙Q˙S
23 simp1r KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XWH
24 1 5 lhpbase WHWB
25 23 24 syl KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XWB
26 2 3 4 hlatlej1 KHLQASAQ˙Q˙S
27 8 13 10 26 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙Q˙S
28 eqid meetK=meetK
29 1 2 3 28 4 atmod3i1 KHLQAQ˙SBWBQ˙Q˙SQ˙Q˙SmeetKW=Q˙SmeetKQ˙W
30 8 13 15 25 27 29 syl131anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙Q˙SmeetKW=Q˙SmeetKQ˙W
31 simp1 KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XKHLWH
32 simp21 KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQA¬Q˙W
33 eqid 1.K=1.K
34 2 3 33 4 5 lhpjat2 KHLWHQA¬Q˙WQ˙W=1.K
35 31 32 34 syl2anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙W=1.K
36 35 oveq2d KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙SmeetKQ˙W=Q˙SmeetK1.K
37 hlol KHLKOL
38 8 37 syl KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XKOL
39 1 28 33 olm11 KOLQ˙SBQ˙SmeetK1.K=Q˙S
40 38 15 39 syl2anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙SmeetK1.K=Q˙S
41 30 36 40 3eqtrrd KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙S=Q˙Q˙SmeetKW
42 simp31 KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XgT
43 2 3 28 4 5 6 7 trlval2 KHLWHgTQA¬Q˙WRg=Q˙gQmeetKW
44 31 42 32 43 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XRg=Q˙gQmeetKW
45 simp32 KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XgQ=S
46 45 oveq2d KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙gQ=Q˙S
47 46 oveq1d KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙gQmeetKW=Q˙SmeetKW
48 44 47 eqtrd KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XRg=Q˙SmeetKW
49 simp33 KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XRg˙X
50 48 49 eqbrtrrd KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙SmeetKW˙X
51 1 28 latmcl KLatQ˙SBWBQ˙SmeetKWB
52 9 15 25 51 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙SmeetKWB
53 1 2 3 latjlej2 KLatQ˙SmeetKWBXBQBQ˙SmeetKW˙XQ˙Q˙SmeetKW˙Q˙X
54 9 52 18 17 53 syl13anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙SmeetKW˙XQ˙Q˙SmeetKW˙Q˙X
55 50 54 mpd KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙Q˙SmeetKW˙Q˙X
56 41 55 eqbrtrd KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XQ˙S˙Q˙X
57 1 2 9 12 15 20 22 56 lattrd KHLWHQA¬Q˙WSA¬S˙WXBX˙WgTgQ=SRg˙XS˙Q˙X