Metamath Proof Explorer


Theorem cdlemn5pre

Description: Part of proof of Lemma N of Crawley p. 121 line 32. (Contributed by NM, 25-Feb-2014)

Ref Expression
Hypotheses cdlemn5.b B=BaseK
cdlemn5.l ˙=K
cdlemn5.j ˙=joinK
cdlemn5.a A=AtomsK
cdlemn5.h H=LHypK
cdlemn5.u U=DVecHKW
cdlemn5.s ˙=LSSumU
cdlemn5.i I=DIsoBKW
cdlemn5.J J=DIsoCKW
cdlemn5.p P=ocKW
cdlemn5.o O=hTIB
cdlemn5.t T=LTrnKW
cdlemn5.e E=TEndoKW
cdlemn5.n N=LSpanU
cdlemn5.f F=ιhT|hP=Q
cdlemn5.g G=ιhT|hP=R
cdlemn5.m M=ιhT|hQ=R
Assertion cdlemn5pre KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJRJQ˙IX

Proof

Step Hyp Ref Expression
1 cdlemn5.b B=BaseK
2 cdlemn5.l ˙=K
3 cdlemn5.j ˙=joinK
4 cdlemn5.a A=AtomsK
5 cdlemn5.h H=LHypK
6 cdlemn5.u U=DVecHKW
7 cdlemn5.s ˙=LSSumU
8 cdlemn5.i I=DIsoBKW
9 cdlemn5.J J=DIsoCKW
10 cdlemn5.p P=ocKW
11 cdlemn5.o O=hTIB
12 cdlemn5.t T=LTrnKW
13 cdlemn5.e E=TEndoKW
14 cdlemn5.n N=LSpanU
15 cdlemn5.f F=ιhT|hP=Q
16 cdlemn5.g G=ιhT|hP=R
17 cdlemn5.m M=ιhT|hQ=R
18 simp1 KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XKHLWH
19 simp22 KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XRA¬R˙W
20 2 4 5 10 12 9 6 14 16 diclspsn KHLWHRA¬R˙WJR=NGIT
21 18 19 20 syl2anc KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJR=NGIT
22 simp21 KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XQA¬Q˙W
23 1 2 4 10 5 12 11 6 15 16 17 14 7 cdlemn4a KHLWHQA¬Q˙WRA¬R˙WNGITNFIT˙NMO
24 18 22 19 23 syl3anc KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XNGITNFIT˙NMO
25 2 4 5 10 12 9 6 14 15 diclspsn KHLWHQA¬Q˙WJQ=NFIT
26 18 22 25 syl2anc KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJQ=NFIT
27 26 oveq1d KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJQ˙NMO=NFIT˙NMO
28 24 27 sseqtrrd KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XNGITJQ˙NMO
29 5 6 18 dvhlmod KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XULMod
30 eqid LSubSpU=LSubSpU
31 30 lsssssubg ULModLSubSpUSubGrpU
32 29 31 syl KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XLSubSpUSubGrpU
33 2 4 5 6 9 30 diclss KHLWHQA¬Q˙WJQLSubSpU
34 18 22 33 syl2anc KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJQLSubSpU
35 32 34 sseldd KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJQSubGrpU
36 simp23 KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XXBX˙W
37 1 2 5 6 8 30 diblss KHLWHXBX˙WIXLSubSpU
38 18 36 37 syl2anc KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XIXLSubSpU
39 32 38 sseldd KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XIXSubGrpU
40 eqid trLKW=trLKW
41 1 2 3 4 5 12 40 11 8 6 14 17 cdlemn2a KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XNMOIX
42 7 lsmless2 JQSubGrpUIXSubGrpUNMOIXJQ˙NMOJQ˙IX
43 35 39 41 42 syl3anc KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJQ˙NMOJQ˙IX
44 28 43 sstrd KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XNGITJQ˙IX
45 21 44 eqsstrd KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJRJQ˙IX