Metamath Proof Explorer


Theorem chnrev

Description: Reverse of a chain is chain under the converse relation and same domain. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnrev B Chain A < ˙ reverse B Chain A < ˙ -1

Proof

Step Hyp Ref Expression
1 id B Chain A < ˙ B Chain A < ˙
2 1 chnwrd B Chain A < ˙ B Word A
3 revcl B Word A reverse B Word A
4 2 3 syl B Chain A < ˙ reverse B Word A
5 simpl B Chain A < ˙ n dom reverse B 0 B Chain A < ˙
6 fzossfz 0 ..^ reverse B 0 reverse B
7 6 a1i B Chain A < ˙ 0 ..^ reverse B 0 reverse B
8 wrddm reverse B Word A dom reverse B = 0 ..^ reverse B
9 4 8 syl B Chain A < ˙ dom reverse B = 0 ..^ reverse B
10 revlen B Word A reverse B = B
11 2 10 syl B Chain A < ˙ reverse B = B
12 11 eqcomd B Chain A < ˙ B = reverse B
13 12 oveq2d B Chain A < ˙ 0 B = 0 reverse B
14 7 9 13 3sstr4d B Chain A < ˙ dom reverse B 0 B
15 14 ssdifd B Chain A < ˙ dom reverse B 0 0 B 0
16 15 sselda B Chain A < ˙ n dom reverse B 0 n 0 B 0
17 2 adantr B Chain A < ˙ n dom reverse B 0 B Word A
18 lencl B Word A B 0
19 17 18 syl B Chain A < ˙ n dom reverse B 0 B 0
20 fz0dif1 B 0 0 B 0 = 1 B
21 19 20 syl B Chain A < ˙ n dom reverse B 0 0 B 0 = 1 B
22 16 21 eleqtrd B Chain A < ˙ n dom reverse B 0 n 1 B
23 ubmelfzo n 1 B B n 0 ..^ B
24 22 23 syl B Chain A < ˙ n dom reverse B 0 B n 0 ..^ B
25 wrddm B Word A dom B = 0 ..^ B
26 17 25 syl B Chain A < ˙ n dom reverse B 0 dom B = 0 ..^ B
27 24 26 eleqtrrd B Chain A < ˙ n dom reverse B 0 B n dom B
28 19 nn0cnd B Chain A < ˙ n dom reverse B 0 B
29 eldifi n dom reverse B 0 n dom reverse B
30 29 anim2i B Chain A < ˙ n dom reverse B 0 B Chain A < ˙ n dom reverse B
31 2 3 8 3syl B Chain A < ˙ dom reverse B = 0 ..^ reverse B
32 31 eleq2d B Chain A < ˙ n dom reverse B n 0 ..^ reverse B
33 32 biimpa B Chain A < ˙ n dom reverse B n 0 ..^ reverse B
34 elfzoelz n 0 ..^ reverse B n
35 33 34 syl B Chain A < ˙ n dom reverse B n
36 zcn n n
37 30 35 36 3syl B Chain A < ˙ n dom reverse B 0 n
38 29 adantl B Chain A < ˙ n dom reverse B 0 n dom reverse B
39 17 3 syl B Chain A < ˙ n dom reverse B 0 reverse B Word A
40 wrdlndm reverse B Word A reverse B dom reverse B
41 39 40 syl B Chain A < ˙ n dom reverse B 0 reverse B dom reverse B
42 17 10 syl B Chain A < ˙ n dom reverse B 0 reverse B = B
43 eqidd B Chain A < ˙ n dom reverse B 0 dom reverse B = dom reverse B
44 42 43 neleq12d B Chain A < ˙ n dom reverse B 0 reverse B dom reverse B B dom reverse B
45 41 44 mpbid B Chain A < ˙ n dom reverse B 0 B dom reverse B
46 elnelne2 n dom reverse B B dom reverse B n B
47 38 45 46 syl2anc B Chain A < ˙ n dom reverse B 0 n B
48 47 necomd B Chain A < ˙ n dom reverse B 0 B n
49 28 37 48 subne0d B Chain A < ˙ n dom reverse B 0 B n 0
50 27 49 eldifsnd B Chain A < ˙ n dom reverse B 0 B n dom B 0
51 5 50 chnltm1 B Chain A < ˙ n dom reverse B 0 B B - n - 1 < ˙ B B n
52 1cnd B Chain A < ˙ n dom reverse B 0 1
53 28 52 37 sub32d B Chain A < ˙ n dom reverse B 0 B - 1 - n = B - n - 1
54 53 fveq2d B Chain A < ˙ n dom reverse B 0 B B - 1 - n = B B - n - 1
55 28 37 52 nnncan2d B Chain A < ˙ n dom reverse B 0 B - 1 - n 1 = B n
56 55 fveq2d B Chain A < ˙ n dom reverse B 0 B B - 1 - n 1 = B B n
57 51 54 56 3brtr4d B Chain A < ˙ n dom reverse B 0 B B - 1 - n < ˙ B B - 1 - n 1
58 fvex B B - 1 - n 1 V
59 fvex B B - 1 - n V
60 58 59 brcnv B B - 1 - n 1 < ˙ -1 B B - 1 - n B B - 1 - n < ˙ B B - 1 - n 1
61 57 60 sylibr B Chain A < ˙ n dom reverse B 0 B B - 1 - n 1 < ˙ -1 B B - 1 - n
62 39 8 syl B Chain A < ˙ n dom reverse B 0 dom reverse B = 0 ..^ reverse B
63 38 62 eleqtrd B Chain A < ˙ n dom reverse B 0 n 0 ..^ reverse B
64 elfzonn0 n 0 ..^ reverse B n 0
65 63 64 syl B Chain A < ˙ n dom reverse B 0 n 0
66 eldifsni n dom reverse B 0 n 0
67 66 adantl B Chain A < ˙ n dom reverse B 0 n 0
68 elnnne0 n n 0 n 0
69 65 67 68 sylanbrc B Chain A < ˙ n dom reverse B 0 n
70 nnm1nn0 n n 1 0
71 69 70 syl B Chain A < ˙ n dom reverse B 0 n 1 0
72 elfzo0le n 0 ..^ reverse B n reverse B
73 63 72 syl B Chain A < ˙ n dom reverse B 0 n reverse B
74 37 52 npcand B Chain A < ˙ n dom reverse B 0 n - 1 + 1 = n
75 42 eqcomd B Chain A < ˙ n dom reverse B 0 B = reverse B
76 73 74 75 3brtr4d B Chain A < ˙ n dom reverse B 0 n - 1 + 1 B
77 nn0p1elfzo n 1 0 B 0 n - 1 + 1 B n 1 0 ..^ B
78 71 19 76 77 syl3anc B Chain A < ˙ n dom reverse B 0 n 1 0 ..^ B
79 revfv B Word A n 1 0 ..^ B reverse B n 1 = B B - 1 - n 1
80 17 78 79 syl2anc B Chain A < ˙ n dom reverse B 0 reverse B n 1 = B B - 1 - n 1
81 11 oveq2d B Chain A < ˙ 0 ..^ reverse B = 0 ..^ B
82 31 81 eqtrd B Chain A < ˙ dom reverse B = 0 ..^ B
83 82 eleq2d B Chain A < ˙ n dom reverse B n 0 ..^ B
84 29 83 imbitrid B Chain A < ˙ n dom reverse B 0 n 0 ..^ B
85 84 imp B Chain A < ˙ n dom reverse B 0 n 0 ..^ B
86 revfv B Word A n 0 ..^ B reverse B n = B B - 1 - n
87 17 85 86 syl2anc B Chain A < ˙ n dom reverse B 0 reverse B n = B B - 1 - n
88 61 80 87 3brtr4d B Chain A < ˙ n dom reverse B 0 reverse B n 1 < ˙ -1 reverse B n
89 88 ralrimiva B Chain A < ˙ n dom reverse B 0 reverse B n 1 < ˙ -1 reverse B n
90 ischn reverse B Chain A < ˙ -1 reverse B Word A n dom reverse B 0 reverse B n 1 < ˙ -1 reverse B n
91 4 89 90 sylanbrc B Chain A < ˙ reverse B Chain A < ˙ -1