| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → 𝐵 ∈ ( < Chain 𝐴 ) ) |
| 2 |
1
|
chnwrd |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → 𝐵 ∈ Word 𝐴 ) |
| 3 |
|
revcl |
⊢ ( 𝐵 ∈ Word 𝐴 → ( reverse ‘ 𝐵 ) ∈ Word 𝐴 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( reverse ‘ 𝐵 ) ∈ Word 𝐴 ) |
| 5 |
|
simpl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝐵 ∈ ( < Chain 𝐴 ) ) |
| 6 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ⊆ ( 0 ... ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ⊆ ( 0 ... ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ) |
| 8 |
|
wrddm |
⊢ ( ( reverse ‘ 𝐵 ) ∈ Word 𝐴 → dom ( reverse ‘ 𝐵 ) = ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ) |
| 9 |
4 8
|
syl |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → dom ( reverse ‘ 𝐵 ) = ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ) |
| 10 |
|
revlen |
⊢ ( 𝐵 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 11 |
2 10
|
syl |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( ♯ ‘ ( reverse ‘ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( 0 ... ( ♯ ‘ 𝐵 ) ) = ( 0 ... ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ) |
| 14 |
7 9 13
|
3sstr4d |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → dom ( reverse ‘ 𝐵 ) ⊆ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
| 15 |
14
|
ssdifd |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ⊆ ( ( 0 ... ( ♯ ‘ 𝐵 ) ) ∖ { 0 } ) ) |
| 16 |
15
|
sselda |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ∈ ( ( 0 ... ( ♯ ‘ 𝐵 ) ) ∖ { 0 } ) ) |
| 17 |
2
|
adantr |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝐵 ∈ Word 𝐴 ) |
| 18 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝐴 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 20 |
|
fz0dif1 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ( 0 ... ( ♯ ‘ 𝐵 ) ) ∖ { 0 } ) = ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( 0 ... ( ♯ ‘ 𝐵 ) ) ∖ { 0 } ) = ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 22 |
16 21
|
eleqtrd |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 23 |
|
ubmelfzo |
⊢ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − 𝑛 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( ♯ ‘ 𝐵 ) − 𝑛 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 25 |
|
wrddm |
⊢ ( 𝐵 ∈ Word 𝐴 → dom 𝐵 = ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 26 |
17 25
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → dom 𝐵 = ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 27 |
24 26
|
eleqtrrd |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( ♯ ‘ 𝐵 ) − 𝑛 ) ∈ dom 𝐵 ) |
| 28 |
19
|
nn0cnd |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 29 |
|
eldifi |
⊢ ( 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) → 𝑛 ∈ dom ( reverse ‘ 𝐵 ) ) |
| 30 |
29
|
anim2i |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ dom ( reverse ‘ 𝐵 ) ) ) |
| 31 |
2 3 8
|
3syl |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → dom ( reverse ‘ 𝐵 ) = ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ) |
| 32 |
31
|
eleq2d |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( 𝑛 ∈ dom ( reverse ‘ 𝐵 ) ↔ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ) ) |
| 33 |
32
|
biimpa |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ dom ( reverse ‘ 𝐵 ) ) → 𝑛 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ) |
| 34 |
|
elfzoelz |
⊢ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) → 𝑛 ∈ ℤ ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ dom ( reverse ‘ 𝐵 ) ) → 𝑛 ∈ ℤ ) |
| 36 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
| 37 |
30 35 36
|
3syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ∈ ℂ ) |
| 38 |
29
|
adantl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ∈ dom ( reverse ‘ 𝐵 ) ) |
| 39 |
17 3
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( reverse ‘ 𝐵 ) ∈ Word 𝐴 ) |
| 40 |
|
wrdlndm |
⊢ ( ( reverse ‘ 𝐵 ) ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ∉ dom ( reverse ‘ 𝐵 ) ) |
| 41 |
39 40
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ∉ dom ( reverse ‘ 𝐵 ) ) |
| 42 |
17 10
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ♯ ‘ ( reverse ‘ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 43 |
|
eqidd |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → dom ( reverse ‘ 𝐵 ) = dom ( reverse ‘ 𝐵 ) ) |
| 44 |
42 43
|
neleq12d |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ∉ dom ( reverse ‘ 𝐵 ) ↔ ( ♯ ‘ 𝐵 ) ∉ dom ( reverse ‘ 𝐵 ) ) ) |
| 45 |
41 44
|
mpbid |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ♯ ‘ 𝐵 ) ∉ dom ( reverse ‘ 𝐵 ) ) |
| 46 |
|
elnelne2 |
⊢ ( ( 𝑛 ∈ dom ( reverse ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ∉ dom ( reverse ‘ 𝐵 ) ) → 𝑛 ≠ ( ♯ ‘ 𝐵 ) ) |
| 47 |
38 45 46
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ≠ ( ♯ ‘ 𝐵 ) ) |
| 48 |
47
|
necomd |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ♯ ‘ 𝐵 ) ≠ 𝑛 ) |
| 49 |
28 37 48
|
subne0d |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( ♯ ‘ 𝐵 ) − 𝑛 ) ≠ 0 ) |
| 50 |
27 49
|
eldifsnd |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( ♯ ‘ 𝐵 ) − 𝑛 ) ∈ ( dom 𝐵 ∖ { 0 } ) ) |
| 51 |
5 50
|
chnltm1 |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 𝑛 ) − 1 ) ) < ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 𝑛 ) ) ) |
| 52 |
|
1cnd |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 1 ∈ ℂ ) |
| 53 |
28 52 37
|
sub32d |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 𝑛 ) = ( ( ( ♯ ‘ 𝐵 ) − 𝑛 ) − 1 ) ) |
| 54 |
53
|
fveq2d |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 𝑛 ) ) = ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 𝑛 ) − 1 ) ) ) |
| 55 |
28 37 52
|
nnncan2d |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − 1 ) − ( 𝑛 − 1 ) ) = ( ( ♯ ‘ 𝐵 ) − 𝑛 ) ) |
| 56 |
55
|
fveq2d |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − ( 𝑛 − 1 ) ) ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 𝑛 ) ) ) |
| 57 |
51 54 56
|
3brtr4d |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 𝑛 ) ) < ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − ( 𝑛 − 1 ) ) ) ) |
| 58 |
|
fvex |
⊢ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − ( 𝑛 − 1 ) ) ) ∈ V |
| 59 |
|
fvex |
⊢ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 𝑛 ) ) ∈ V |
| 60 |
58 59
|
brcnv |
⊢ ( ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − ( 𝑛 − 1 ) ) ) ◡ < ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 𝑛 ) ) ↔ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 𝑛 ) ) < ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − ( 𝑛 − 1 ) ) ) ) |
| 61 |
57 60
|
sylibr |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − ( 𝑛 − 1 ) ) ) ◡ < ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 𝑛 ) ) ) |
| 62 |
39 8
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → dom ( reverse ‘ 𝐵 ) = ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ) |
| 63 |
38 62
|
eleqtrd |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) ) |
| 64 |
|
elfzonn0 |
⊢ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 65 |
63 64
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ∈ ℕ0 ) |
| 66 |
|
eldifsni |
⊢ ( 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) → 𝑛 ≠ 0 ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ≠ 0 ) |
| 68 |
|
elnnne0 |
⊢ ( 𝑛 ∈ ℕ ↔ ( 𝑛 ∈ ℕ0 ∧ 𝑛 ≠ 0 ) ) |
| 69 |
65 67 68
|
sylanbrc |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ∈ ℕ ) |
| 70 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 71 |
69 70
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 72 |
|
elfzo0le |
⊢ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) → 𝑛 ≤ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) |
| 73 |
63 72
|
syl |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ≤ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) |
| 74 |
37 52
|
npcand |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 75 |
42
|
eqcomd |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) |
| 76 |
73 74 75
|
3brtr4d |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( 𝑛 − 1 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 77 |
|
nn0p1elfzo |
⊢ ( ( ( 𝑛 − 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ( 𝑛 − 1 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 78 |
71 19 76 77
|
syl3anc |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 79 |
|
revfv |
⊢ ( ( 𝐵 ∈ Word 𝐴 ∧ ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → ( ( reverse ‘ 𝐵 ) ‘ ( 𝑛 − 1 ) ) = ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − ( 𝑛 − 1 ) ) ) ) |
| 80 |
17 78 79
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( reverse ‘ 𝐵 ) ‘ ( 𝑛 − 1 ) ) = ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − ( 𝑛 − 1 ) ) ) ) |
| 81 |
11
|
oveq2d |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝐵 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 82 |
31 81
|
eqtrd |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → dom ( reverse ‘ 𝐵 ) = ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 83 |
82
|
eleq2d |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( 𝑛 ∈ dom ( reverse ‘ 𝐵 ) ↔ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) |
| 84 |
29 83
|
imbitrid |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) → 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) |
| 85 |
84
|
imp |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 86 |
|
revfv |
⊢ ( ( 𝐵 ∈ Word 𝐴 ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → ( ( reverse ‘ 𝐵 ) ‘ 𝑛 ) = ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 𝑛 ) ) ) |
| 87 |
17 85 86
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( reverse ‘ 𝐵 ) ‘ 𝑛 ) = ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 𝑛 ) ) ) |
| 88 |
61 80 87
|
3brtr4d |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ) → ( ( reverse ‘ 𝐵 ) ‘ ( 𝑛 − 1 ) ) ◡ < ( ( reverse ‘ 𝐵 ) ‘ 𝑛 ) ) |
| 89 |
88
|
ralrimiva |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ∀ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ( ( reverse ‘ 𝐵 ) ‘ ( 𝑛 − 1 ) ) ◡ < ( ( reverse ‘ 𝐵 ) ‘ 𝑛 ) ) |
| 90 |
|
ischn |
⊢ ( ( reverse ‘ 𝐵 ) ∈ ( ◡ < Chain 𝐴 ) ↔ ( ( reverse ‘ 𝐵 ) ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom ( reverse ‘ 𝐵 ) ∖ { 0 } ) ( ( reverse ‘ 𝐵 ) ‘ ( 𝑛 − 1 ) ) ◡ < ( ( reverse ‘ 𝐵 ) ‘ 𝑛 ) ) ) |
| 91 |
4 89 90
|
sylanbrc |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → ( reverse ‘ 𝐵 ) ∈ ( ◡ < Chain 𝐴 ) ) |