| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climxrrelem.m |  | 
						
							| 2 |  | climxrrelem.z |  | 
						
							| 3 |  | climxrrelem.f |  | 
						
							| 4 |  | climxrrelem.c |  | 
						
							| 5 |  | climxrrelem.d |  | 
						
							| 6 |  | climxrrelem.p |  | 
						
							| 7 |  | climxrrelem.n |  | 
						
							| 8 |  | nfv |  | 
						
							| 9 |  | nfv |  | 
						
							| 10 |  | nfra1 |  | 
						
							| 11 | 9 10 | nfan |  | 
						
							| 12 | 8 11 | nfan |  | 
						
							| 13 | 2 | uztrn2 |  | 
						
							| 14 | 13 | adantll |  | 
						
							| 15 | 3 | fdmd |  | 
						
							| 16 | 15 | ad2antrr |  | 
						
							| 17 | 14 16 | eleqtrrd |  | 
						
							| 18 | 17 | adantlrr |  | 
						
							| 19 |  | simpll |  | 
						
							| 20 | 14 | adantlrr |  | 
						
							| 21 |  | rspa |  | 
						
							| 22 | 21 | adantll |  | 
						
							| 23 | 22 | adantll |  | 
						
							| 24 | 3 | ffvelcdmda |  | 
						
							| 25 | 24 | 3adant3 |  | 
						
							| 26 |  | simpll |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 |  | simpl |  | 
						
							| 29 | 27 28 | eqeltrrd |  | 
						
							| 30 | 29 | adantll |  | 
						
							| 31 | 26 30 7 | syl2anc |  | 
						
							| 32 | 31 | adantlrr |  | 
						
							| 33 |  | fvoveq1 |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 |  | simpl |  | 
						
							| 36 | 34 35 | eqbrtrrd |  | 
						
							| 37 | 36 | adantll |  | 
						
							| 38 | 37 | adantlrl |  | 
						
							| 39 | 2 | fvexi |  | 
						
							| 40 | 39 | a1i |  | 
						
							| 41 | 3 40 | fexd |  | 
						
							| 42 |  | eqidd |  | 
						
							| 43 | 41 42 | clim |  | 
						
							| 44 | 4 43 | mpbid |  | 
						
							| 45 | 44 | simpld |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 | 30 46 | subcld |  | 
						
							| 48 | 47 | abscld |  | 
						
							| 49 | 48 | adantlrr |  | 
						
							| 50 | 5 | rpred |  | 
						
							| 51 | 50 | ad2antrr |  | 
						
							| 52 | 49 51 | ltnled |  | 
						
							| 53 | 38 52 | mpbid |  | 
						
							| 54 | 32 53 | pm2.65da |  | 
						
							| 55 | 54 | 3adant2 |  | 
						
							| 56 | 55 | neqned |  | 
						
							| 57 |  | simpll |  | 
						
							| 58 |  | simpr |  | 
						
							| 59 |  | simpl |  | 
						
							| 60 | 58 59 | eqeltrrd |  | 
						
							| 61 | 60 | adantll |  | 
						
							| 62 | 57 61 6 | syl2anc |  | 
						
							| 63 | 62 | adantlrr |  | 
						
							| 64 |  | fvoveq1 |  | 
						
							| 65 | 64 | adantl |  | 
						
							| 66 |  | simpl |  | 
						
							| 67 | 65 66 | eqbrtrrd |  | 
						
							| 68 | 67 | adantll |  | 
						
							| 69 | 68 | adantlrl |  | 
						
							| 70 | 45 | ad2antrr |  | 
						
							| 71 | 61 70 | subcld |  | 
						
							| 72 | 71 | abscld |  | 
						
							| 73 | 72 | adantlrr |  | 
						
							| 74 | 50 | ad2antrr |  | 
						
							| 75 | 73 74 | ltnled |  | 
						
							| 76 | 69 75 | mpbid |  | 
						
							| 77 | 63 76 | pm2.65da |  | 
						
							| 78 | 77 | 3adant2 |  | 
						
							| 79 | 78 | neqned |  | 
						
							| 80 | 25 56 79 | xrred |  | 
						
							| 81 | 19 20 23 80 | syl3anc |  | 
						
							| 82 | 18 81 | jca |  | 
						
							| 83 | 12 82 | ralrimia |  | 
						
							| 84 | 3 | ffund |  | 
						
							| 85 |  | ffvresb |  | 
						
							| 86 | 84 85 | syl |  | 
						
							| 87 | 86 | adantr |  | 
						
							| 88 | 83 87 | mpbird |  | 
						
							| 89 |  | breq2 |  | 
						
							| 90 | 89 | anbi2d |  | 
						
							| 91 | 90 | rexralbidv |  | 
						
							| 92 | 44 | simprd |  | 
						
							| 93 | 91 92 5 | rspcdva |  | 
						
							| 94 | 2 | rexuz3 |  | 
						
							| 95 | 1 94 | syl |  | 
						
							| 96 | 93 95 | mpbird |  | 
						
							| 97 | 88 96 | reximddv |  |