Metamath Proof Explorer


Theorem climxrrelem

Description: If a seqence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxrrelem.m φ M
climxrrelem.z Z = M
climxrrelem.f φ F : Z *
climxrrelem.c φ F A
climxrrelem.d φ D +
climxrrelem.p φ +∞ D +∞ A
climxrrelem.n φ −∞ D −∞ A
Assertion climxrrelem φ j Z F j : j

Proof

Step Hyp Ref Expression
1 climxrrelem.m φ M
2 climxrrelem.z Z = M
3 climxrrelem.f φ F : Z *
4 climxrrelem.c φ F A
5 climxrrelem.d φ D +
6 climxrrelem.p φ +∞ D +∞ A
7 climxrrelem.n φ −∞ D −∞ A
8 nfv k φ
9 nfv k j Z
10 nfra1 k k j F k F k A < D
11 9 10 nfan k j Z k j F k F k A < D
12 8 11 nfan k φ j Z k j F k F k A < D
13 2 uztrn2 j Z k j k Z
14 13 adantll φ j Z k j k Z
15 3 fdmd φ dom F = Z
16 15 ad2antrr φ j Z k j dom F = Z
17 14 16 eleqtrrd φ j Z k j k dom F
18 17 adantlrr φ j Z k j F k F k A < D k j k dom F
19 simpll φ j Z k j F k F k A < D k j φ
20 14 adantlrr φ j Z k j F k F k A < D k j k Z
21 rspa k j F k F k A < D k j F k F k A < D
22 21 adantll j Z k j F k F k A < D k j F k F k A < D
23 22 adantll φ j Z k j F k F k A < D k j F k F k A < D
24 3 ffvelrnda φ k Z F k *
25 24 3adant3 φ k Z F k F k A < D F k *
26 simpll φ F k F k = −∞ φ
27 simpr F k F k = −∞ F k = −∞
28 simpl F k F k = −∞ F k
29 27 28 eqeltrrd F k F k = −∞ −∞
30 29 adantll φ F k F k = −∞ −∞
31 26 30 7 syl2anc φ F k F k = −∞ D −∞ A
32 31 adantlrr φ F k F k A < D F k = −∞ D −∞ A
33 fvoveq1 F k = −∞ F k A = −∞ A
34 33 adantl F k A < D F k = −∞ F k A = −∞ A
35 simpl F k A < D F k = −∞ F k A < D
36 34 35 eqbrtrrd F k A < D F k = −∞ −∞ A < D
37 36 adantll φ F k A < D F k = −∞ −∞ A < D
38 37 adantlrl φ F k F k A < D F k = −∞ −∞ A < D
39 2 fvexi Z V
40 39 a1i φ Z V
41 3 40 fexd φ F V
42 eqidd φ k F k = F k
43 41 42 clim φ F A A x + j k j F k F k A < x
44 4 43 mpbid φ A x + j k j F k F k A < x
45 44 simpld φ A
46 45 ad2antrr φ F k F k = −∞ A
47 30 46 subcld φ F k F k = −∞ −∞ A
48 47 abscld φ F k F k = −∞ −∞ A
49 48 adantlrr φ F k F k A < D F k = −∞ −∞ A
50 5 rpred φ D
51 50 ad2antrr φ F k F k A < D F k = −∞ D
52 49 51 ltnled φ F k F k A < D F k = −∞ −∞ A < D ¬ D −∞ A
53 38 52 mpbid φ F k F k A < D F k = −∞ ¬ D −∞ A
54 32 53 pm2.65da φ F k F k A < D ¬ F k = −∞
55 54 3adant2 φ k Z F k F k A < D ¬ F k = −∞
56 55 neqned φ k Z F k F k A < D F k −∞
57 simpll φ F k F k = +∞ φ
58 simpr F k F k = +∞ F k = +∞
59 simpl F k F k = +∞ F k
60 58 59 eqeltrrd F k F k = +∞ +∞
61 60 adantll φ F k F k = +∞ +∞
62 57 61 6 syl2anc φ F k F k = +∞ D +∞ A
63 62 adantlrr φ F k F k A < D F k = +∞ D +∞ A
64 fvoveq1 F k = +∞ F k A = +∞ A
65 64 adantl F k A < D F k = +∞ F k A = +∞ A
66 simpl F k A < D F k = +∞ F k A < D
67 65 66 eqbrtrrd F k A < D F k = +∞ +∞ A < D
68 67 adantll φ F k A < D F k = +∞ +∞ A < D
69 68 adantlrl φ F k F k A < D F k = +∞ +∞ A < D
70 45 ad2antrr φ F k F k = +∞ A
71 61 70 subcld φ F k F k = +∞ +∞ A
72 71 abscld φ F k F k = +∞ +∞ A
73 72 adantlrr φ F k F k A < D F k = +∞ +∞ A
74 50 ad2antrr φ F k F k A < D F k = +∞ D
75 73 74 ltnled φ F k F k A < D F k = +∞ +∞ A < D ¬ D +∞ A
76 69 75 mpbid φ F k F k A < D F k = +∞ ¬ D +∞ A
77 63 76 pm2.65da φ F k F k A < D ¬ F k = +∞
78 77 3adant2 φ k Z F k F k A < D ¬ F k = +∞
79 78 neqned φ k Z F k F k A < D F k +∞
80 25 56 79 xrred φ k Z F k F k A < D F k
81 19 20 23 80 syl3anc φ j Z k j F k F k A < D k j F k
82 18 81 jca φ j Z k j F k F k A < D k j k dom F F k
83 12 82 ralrimia φ j Z k j F k F k A < D k j k dom F F k
84 3 ffund φ Fun F
85 ffvresb Fun F F j : j k j k dom F F k
86 84 85 syl φ F j : j k j k dom F F k
87 86 adantr φ j Z k j F k F k A < D F j : j k j k dom F F k
88 83 87 mpbird φ j Z k j F k F k A < D F j : j
89 breq2 x = D F k A < x F k A < D
90 89 anbi2d x = D F k F k A < x F k F k A < D
91 90 rexralbidv x = D j k j F k F k A < x j k j F k F k A < D
92 44 simprd φ x + j k j F k F k A < x
93 91 92 5 rspcdva φ j k j F k F k A < D
94 2 rexuz3 M j Z k j F k F k A < D j k j F k F k A < D
95 1 94 syl φ j Z k j F k F k A < D j k j F k F k A < D
96 93 95 mpbird φ j Z k j F k F k A < D
97 88 96 reximddv φ j Z F j : j