Metamath Proof Explorer


Theorem climxrrelem

Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxrrelem.m φM
climxrrelem.z Z=M
climxrrelem.f φF:Z*
climxrrelem.c φFA
climxrrelem.d φD+
climxrrelem.p φ+∞D+∞A
climxrrelem.n φ−∞D−∞A
Assertion climxrrelem φjZFj:j

Proof

Step Hyp Ref Expression
1 climxrrelem.m φM
2 climxrrelem.z Z=M
3 climxrrelem.f φF:Z*
4 climxrrelem.c φFA
5 climxrrelem.d φD+
6 climxrrelem.p φ+∞D+∞A
7 climxrrelem.n φ−∞D−∞A
8 nfv kφ
9 nfv kjZ
10 nfra1 kkjFkFkA<D
11 9 10 nfan kjZkjFkFkA<D
12 8 11 nfan kφjZkjFkFkA<D
13 2 uztrn2 jZkjkZ
14 13 adantll φjZkjkZ
15 3 fdmd φdomF=Z
16 15 ad2antrr φjZkjdomF=Z
17 14 16 eleqtrrd φjZkjkdomF
18 17 adantlrr φjZkjFkFkA<DkjkdomF
19 simpll φjZkjFkFkA<Dkjφ
20 14 adantlrr φjZkjFkFkA<DkjkZ
21 rspa kjFkFkA<DkjFkFkA<D
22 21 adantll jZkjFkFkA<DkjFkFkA<D
23 22 adantll φjZkjFkFkA<DkjFkFkA<D
24 3 ffvelcdmda φkZFk*
25 24 3adant3 φkZFkFkA<DFk*
26 simpll φFkFk=−∞φ
27 simpr FkFk=−∞Fk=−∞
28 simpl FkFk=−∞Fk
29 27 28 eqeltrrd FkFk=−∞−∞
30 29 adantll φFkFk=−∞−∞
31 26 30 7 syl2anc φFkFk=−∞D−∞A
32 31 adantlrr φFkFkA<DFk=−∞D−∞A
33 fvoveq1 Fk=−∞FkA=−∞A
34 33 adantl FkA<DFk=−∞FkA=−∞A
35 simpl FkA<DFk=−∞FkA<D
36 34 35 eqbrtrrd FkA<DFk=−∞−∞A<D
37 36 adantll φFkA<DFk=−∞−∞A<D
38 37 adantlrl φFkFkA<DFk=−∞−∞A<D
39 2 fvexi ZV
40 39 a1i φZV
41 3 40 fexd φFV
42 eqidd φkFk=Fk
43 41 42 clim φFAAx+jkjFkFkA<x
44 4 43 mpbid φAx+jkjFkFkA<x
45 44 simpld φA
46 45 ad2antrr φFkFk=−∞A
47 30 46 subcld φFkFk=−∞−∞A
48 47 abscld φFkFk=−∞−∞A
49 48 adantlrr φFkFkA<DFk=−∞−∞A
50 5 rpred φD
51 50 ad2antrr φFkFkA<DFk=−∞D
52 49 51 ltnled φFkFkA<DFk=−∞−∞A<D¬D−∞A
53 38 52 mpbid φFkFkA<DFk=−∞¬D−∞A
54 32 53 pm2.65da φFkFkA<D¬Fk=−∞
55 54 3adant2 φkZFkFkA<D¬Fk=−∞
56 55 neqned φkZFkFkA<DFk−∞
57 simpll φFkFk=+∞φ
58 simpr FkFk=+∞Fk=+∞
59 simpl FkFk=+∞Fk
60 58 59 eqeltrrd FkFk=+∞+∞
61 60 adantll φFkFk=+∞+∞
62 57 61 6 syl2anc φFkFk=+∞D+∞A
63 62 adantlrr φFkFkA<DFk=+∞D+∞A
64 fvoveq1 Fk=+∞FkA=+∞A
65 64 adantl FkA<DFk=+∞FkA=+∞A
66 simpl FkA<DFk=+∞FkA<D
67 65 66 eqbrtrrd FkA<DFk=+∞+∞A<D
68 67 adantll φFkA<DFk=+∞+∞A<D
69 68 adantlrl φFkFkA<DFk=+∞+∞A<D
70 45 ad2antrr φFkFk=+∞A
71 61 70 subcld φFkFk=+∞+∞A
72 71 abscld φFkFk=+∞+∞A
73 72 adantlrr φFkFkA<DFk=+∞+∞A
74 50 ad2antrr φFkFkA<DFk=+∞D
75 73 74 ltnled φFkFkA<DFk=+∞+∞A<D¬D+∞A
76 69 75 mpbid φFkFkA<DFk=+∞¬D+∞A
77 63 76 pm2.65da φFkFkA<D¬Fk=+∞
78 77 3adant2 φkZFkFkA<D¬Fk=+∞
79 78 neqned φkZFkFkA<DFk+∞
80 25 56 79 xrred φkZFkFkA<DFk
81 19 20 23 80 syl3anc φjZkjFkFkA<DkjFk
82 18 81 jca φjZkjFkFkA<DkjkdomFFk
83 12 82 ralrimia φjZkjFkFkA<DkjkdomFFk
84 3 ffund φFunF
85 ffvresb FunFFj:jkjkdomFFk
86 84 85 syl φFj:jkjkdomFFk
87 86 adantr φjZkjFkFkA<DFj:jkjkdomFFk
88 83 87 mpbird φjZkjFkFkA<DFj:j
89 breq2 x=DFkA<xFkA<D
90 89 anbi2d x=DFkFkA<xFkFkA<D
91 90 rexralbidv x=DjkjFkFkA<xjkjFkFkA<D
92 44 simprd φx+jkjFkFkA<x
93 91 92 5 rspcdva φjkjFkFkA<D
94 2 rexuz3 MjZkjFkFkA<DjkjFkFkA<D
95 1 94 syl φjZkjFkFkA<DjkjFkFkA<D
96 93 95 mpbird φjZkjFkFkA<D
97 88 96 reximddv φjZFj:j