Metamath Proof Explorer


Theorem clwlknf1oclwwlkn

Description: There is a one-to-one onto function between the set of closed walks as words of length N and the set of closed walks of length N in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018) (Revised by AV, 3-May-2021) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses clwlknf1oclwwlkn.a A=1stc
clwlknf1oclwwlkn.b B=2ndc
clwlknf1oclwwlkn.c C=wClWalksG|1stw=N
clwlknf1oclwwlkn.f F=cCBprefixA
Assertion clwlknf1oclwwlkn GUSHGraphNF:C1-1 ontoNClWWalksNG

Proof

Step Hyp Ref Expression
1 clwlknf1oclwwlkn.a A=1stc
2 clwlknf1oclwwlkn.b B=2ndc
3 clwlknf1oclwwlkn.c C=wClWalksG|1stw=N
4 clwlknf1oclwwlkn.f F=cCBprefixA
5 eqid cwClWalksG|11stw2ndcprefix2ndc1=cwClWalksG|11stw2ndcprefix2ndc1
6 2fveq3 s=w1sts=1stw
7 6 breq2d s=w11sts11stw
8 7 cbvrabv sClWalksG|11sts=wClWalksG|11stw
9 fveq2 d=c2ndd=2ndc
10 2fveq3 d=c2ndd=2ndc
11 10 oveq1d d=c2ndd1=2ndc1
12 9 11 oveq12d d=c2nddprefix2ndd1=2ndcprefix2ndc1
13 12 cbvmptv dsClWalksG|11sts2nddprefix2ndd1=csClWalksG|11sts2ndcprefix2ndc1
14 8 13 clwlkclwwlkf1o GUSHGraphdsClWalksG|11sts2nddprefix2ndd1:sClWalksG|11sts1-1 ontoClWWalksG
15 14 adantr GUSHGraphNdsClWalksG|11sts2nddprefix2ndd1:sClWalksG|11sts1-1 ontoClWWalksG
16 2fveq3 w=s1stw=1sts
17 16 breq2d w=s11stw11sts
18 17 cbvrabv wClWalksG|11stw=sClWalksG|11sts
19 18 mpteq1i cwClWalksG|11stw2ndcprefix2ndc1=csClWalksG|11sts2ndcprefix2ndc1
20 fveq2 c=d2ndc=2ndd
21 2fveq3 c=d2ndc=2ndd
22 21 oveq1d c=d2ndc1=2ndd1
23 20 22 oveq12d c=d2ndcprefix2ndc1=2nddprefix2ndd1
24 23 cbvmptv csClWalksG|11sts2ndcprefix2ndc1=dsClWalksG|11sts2nddprefix2ndd1
25 19 24 eqtri cwClWalksG|11stw2ndcprefix2ndc1=dsClWalksG|11sts2nddprefix2ndd1
26 25 a1i GUSHGraphNcwClWalksG|11stw2ndcprefix2ndc1=dsClWalksG|11sts2nddprefix2ndd1
27 8 eqcomi wClWalksG|11stw=sClWalksG|11sts
28 27 a1i GUSHGraphNwClWalksG|11stw=sClWalksG|11sts
29 eqidd GUSHGraphNClWWalksG=ClWWalksG
30 26 28 29 f1oeq123d GUSHGraphNcwClWalksG|11stw2ndcprefix2ndc1:wClWalksG|11stw1-1 ontoClWWalksGdsClWalksG|11sts2nddprefix2ndd1:sClWalksG|11sts1-1 ontoClWWalksG
31 15 30 mpbird GUSHGraphNcwClWalksG|11stw2ndcprefix2ndc1:wClWalksG|11stw1-1 ontoClWWalksG
32 fveq2 s=2ndcprefix2ndc1s=2ndcprefix2ndc1
33 32 3ad2ant3 GUSHGraphNcwClWalksG|11stws=2ndcprefix2ndc1s=2ndcprefix2ndc1
34 2fveq3 w=c1stw=1stc
35 34 breq2d w=c11stw11stc
36 35 elrab cwClWalksG|11stwcClWalksG11stc
37 clwlknf1oclwwlknlem1 cClWalksG11stc2ndcprefix2ndc1=1stc
38 36 37 sylbi cwClWalksG|11stw2ndcprefix2ndc1=1stc
39 38 3ad2ant2 GUSHGraphNcwClWalksG|11stws=2ndcprefix2ndc12ndcprefix2ndc1=1stc
40 33 39 eqtrd GUSHGraphNcwClWalksG|11stws=2ndcprefix2ndc1s=1stc
41 40 eqeq1d GUSHGraphNcwClWalksG|11stws=2ndcprefix2ndc1s=N1stc=N
42 5 31 41 f1oresrab GUSHGraphNcwClWalksG|11stw2ndcprefix2ndc1cwClWalksG|11stw|1stc=N:cwClWalksG|11stw|1stc=N1-1 ontosClWWalksG|s=N
43 1 2 3 4 clwlknf1oclwwlknlem3 GUSHGraphNF=cwClWalksG|11stwBprefixAC
44 2 a1i GUSHGraphNcwClWalksG|11stwB=2ndc
45 clwlkwlk cClWalksGcWalksG
46 wlkcpr cWalksG1stcWalksG2ndc
47 1 fveq2i A=1stc
48 wlklenvm1 1stcWalksG2ndc1stc=2ndc1
49 47 48 eqtrid 1stcWalksG2ndcA=2ndc1
50 46 49 sylbi cWalksGA=2ndc1
51 45 50 syl cClWalksGA=2ndc1
52 51 adantr cClWalksG11stcA=2ndc1
53 36 52 sylbi cwClWalksG|11stwA=2ndc1
54 53 adantl GUSHGraphNcwClWalksG|11stwA=2ndc1
55 44 54 oveq12d GUSHGraphNcwClWalksG|11stwBprefixA=2ndcprefix2ndc1
56 55 mpteq2dva GUSHGraphNcwClWalksG|11stwBprefixA=cwClWalksG|11stw2ndcprefix2ndc1
57 34 eqeq1d w=c1stw=N1stc=N
58 57 cbvrabv wClWalksG|1stw=N=cClWalksG|1stc=N
59 nnge1 N1N
60 breq2 1stc=N11stc1N
61 59 60 syl5ibrcom N1stc=N11stc
62 61 adantl GUSHGraphN1stc=N11stc
63 62 adantr GUSHGraphNcClWalksG1stc=N11stc
64 63 pm4.71rd GUSHGraphNcClWalksG1stc=N11stc1stc=N
65 64 rabbidva GUSHGraphNcClWalksG|1stc=N=cClWalksG|11stc1stc=N
66 58 65 eqtrid GUSHGraphNwClWalksG|1stw=N=cClWalksG|11stc1stc=N
67 36 anbi1i cwClWalksG|11stw1stc=NcClWalksG11stc1stc=N
68 anass cClWalksG11stc1stc=NcClWalksG11stc1stc=N
69 67 68 bitri cwClWalksG|11stw1stc=NcClWalksG11stc1stc=N
70 69 rabbia2 cwClWalksG|11stw|1stc=N=cClWalksG|11stc1stc=N
71 66 3 70 3eqtr4g GUSHGraphNC=cwClWalksG|11stw|1stc=N
72 56 71 reseq12d GUSHGraphNcwClWalksG|11stwBprefixAC=cwClWalksG|11stw2ndcprefix2ndc1cwClWalksG|11stw|1stc=N
73 43 72 eqtrd GUSHGraphNF=cwClWalksG|11stw2ndcprefix2ndc1cwClWalksG|11stw|1stc=N
74 clwlknf1oclwwlknlem2 NwClWalksG|1stw=N=cClWalksG|11stc1stc=N
75 74 adantl GUSHGraphNwClWalksG|1stw=N=cClWalksG|11stc1stc=N
76 75 3 70 3eqtr4g GUSHGraphNC=cwClWalksG|11stw|1stc=N
77 clwwlkn NClWWalksNG=sClWWalksG|s=N
78 77 a1i GUSHGraphNNClWWalksNG=sClWWalksG|s=N
79 73 76 78 f1oeq123d GUSHGraphNF:C1-1 ontoNClWWalksNGcwClWalksG|11stw2ndcprefix2ndc1cwClWalksG|11stw|1stc=N:cwClWalksG|11stw|1stc=N1-1 ontosClWWalksG|s=N
80 42 79 mpbird GUSHGraphNF:C1-1 ontoNClWWalksNG