| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzoelz |
|
| 2 |
|
cshwlen |
|
| 3 |
1 2
|
sylan2 |
|
| 4 |
3
|
oveq1d |
|
| 5 |
4
|
oveq2d |
|
| 6 |
5
|
eleq2d |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpll |
|
| 9 |
1
|
ad2antlr |
|
| 10 |
|
lencl |
|
| 11 |
|
nn0z |
|
| 12 |
|
peano2zm |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
nn0re |
|
| 15 |
14
|
lem1d |
|
| 16 |
|
eluz2 |
|
| 17 |
13 11 15 16
|
syl3anbrc |
|
| 18 |
10 17
|
syl |
|
| 19 |
18
|
adantr |
|
| 20 |
|
fzoss2 |
|
| 21 |
19 20
|
syl |
|
| 22 |
21
|
sselda |
|
| 23 |
|
cshwidxmod |
|
| 24 |
8 9 22 23
|
syl3anc |
|
| 25 |
|
elfzo1 |
|
| 26 |
25
|
simp2bi |
|
| 27 |
26
|
adantl |
|
| 28 |
|
elfzom1p1elfzo |
|
| 29 |
27 28
|
sylan |
|
| 30 |
|
cshwidxmod |
|
| 31 |
8 9 29 30
|
syl3anc |
|
| 32 |
24 31
|
preq12d |
|
| 33 |
32
|
adantlr |
|
| 34 |
|
2z |
|
| 35 |
34
|
a1i |
|
| 36 |
|
nnz |
|
| 37 |
36
|
3ad2ant2 |
|
| 38 |
|
nnnn0 |
|
| 39 |
38
|
3ad2ant2 |
|
| 40 |
|
nnne0 |
|
| 41 |
40
|
3ad2ant2 |
|
| 42 |
|
1red |
|
| 43 |
|
nnre |
|
| 44 |
43
|
3ad2ant1 |
|
| 45 |
|
nnre |
|
| 46 |
45
|
3ad2ant2 |
|
| 47 |
|
nnge1 |
|
| 48 |
47
|
3ad2ant1 |
|
| 49 |
|
simp3 |
|
| 50 |
42 44 46 48 49
|
lelttrd |
|
| 51 |
42 50
|
gtned |
|
| 52 |
|
nn0n0n1ge2 |
|
| 53 |
39 41 51 52
|
syl3anc |
|
| 54 |
|
eluz2 |
|
| 55 |
35 37 53 54
|
syl3anbrc |
|
| 56 |
25 55
|
sylbi |
|
| 57 |
56
|
ad3antlr |
|
| 58 |
|
elfzoelz |
|
| 59 |
58
|
adantl |
|
| 60 |
1
|
ad3antlr |
|
| 61 |
|
simplrl |
|
| 62 |
|
lsw |
|
| 63 |
62
|
adantr |
|
| 64 |
63
|
preq1d |
|
| 65 |
64
|
eleq1d |
|
| 66 |
65
|
biimpcd |
|
| 67 |
66
|
adantl |
|
| 68 |
67
|
impcom |
|
| 69 |
68
|
adantr |
|
| 70 |
|
clwwisshclwwslemlem |
|
| 71 |
57 59 60 61 69 70
|
syl311anc |
|
| 72 |
33 71
|
eqeltrd |
|
| 73 |
72
|
ex |
|
| 74 |
7 73
|
sylbid |
|
| 75 |
74
|
ralrimiv |
|
| 76 |
75
|
ex |
|