| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cncmp.2 |  | 
						
							| 2 |  | cntop2 |  | 
						
							| 3 | 2 | 3ad2ant3 |  | 
						
							| 4 |  | elpwi |  | 
						
							| 5 |  | simpl1 |  | 
						
							| 6 |  | simpl3 |  | 
						
							| 7 |  | simprl |  | 
						
							| 8 | 7 | sselda |  | 
						
							| 9 |  | cnima |  | 
						
							| 10 | 6 8 9 | syl2an2r |  | 
						
							| 11 | 10 | fmpttd |  | 
						
							| 12 | 11 | frnd |  | 
						
							| 13 |  | simprr |  | 
						
							| 14 | 13 | imaeq2d |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 1 | cnf |  | 
						
							| 17 | 6 16 | syl |  | 
						
							| 18 |  | fimacnv |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 10 | ralrimiva |  | 
						
							| 21 |  | dfiun2g |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 |  | imauni |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 24 | rnmpt |  | 
						
							| 26 | 25 | unieqi |  | 
						
							| 27 | 22 23 26 | 3eqtr4g |  | 
						
							| 28 | 14 19 27 | 3eqtr3d |  | 
						
							| 29 | 15 | cmpcov |  | 
						
							| 30 | 5 12 28 29 | syl3anc |  | 
						
							| 31 |  | elfpw |  | 
						
							| 32 |  | simprll |  | 
						
							| 33 | 32 | sselda |  | 
						
							| 34 |  | simpll2 |  | 
						
							| 35 |  | elssuni |  | 
						
							| 36 | 35 1 | sseqtrrdi |  | 
						
							| 37 | 8 36 | syl |  | 
						
							| 38 |  | foimacnv |  | 
						
							| 39 | 34 37 38 | syl2anc |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 39 40 | eqeltrd |  | 
						
							| 42 | 41 | ralrimiva |  | 
						
							| 43 |  | imaeq2 |  | 
						
							| 44 | 43 | eleq1d |  | 
						
							| 45 | 24 44 | ralrnmptw |  | 
						
							| 46 | 20 45 | syl |  | 
						
							| 47 | 42 46 | mpbird |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 48 | r19.21bi |  | 
						
							| 50 | 33 49 | syldan |  | 
						
							| 51 | 50 | fmpttd |  | 
						
							| 52 | 51 | frnd |  | 
						
							| 53 |  | simprlr |  | 
						
							| 54 |  | eqid |  | 
						
							| 55 | 54 | rnmpt |  | 
						
							| 56 |  | abrexfi |  | 
						
							| 57 | 55 56 | eqeltrid |  | 
						
							| 58 | 53 57 | syl |  | 
						
							| 59 |  | elfpw |  | 
						
							| 60 | 52 58 59 | sylanbrc |  | 
						
							| 61 | 17 | adantr |  | 
						
							| 62 | 61 | fdmd |  | 
						
							| 63 |  | simpll2 |  | 
						
							| 64 |  | fof |  | 
						
							| 65 |  | fdm |  | 
						
							| 66 | 63 64 65 | 3syl |  | 
						
							| 67 |  | simprr |  | 
						
							| 68 | 62 66 67 | 3eqtr3d |  | 
						
							| 69 | 68 | imaeq2d |  | 
						
							| 70 |  | foima |  | 
						
							| 71 | 63 70 | syl |  | 
						
							| 72 | 50 | ralrimiva |  | 
						
							| 73 |  | dfiun2g |  | 
						
							| 74 | 72 73 | syl |  | 
						
							| 75 |  | imauni |  | 
						
							| 76 | 55 | unieqi |  | 
						
							| 77 | 74 75 76 | 3eqtr4g |  | 
						
							| 78 | 69 71 77 | 3eqtr3d |  | 
						
							| 79 |  | unieq |  | 
						
							| 80 | 79 | rspceeqv |  | 
						
							| 81 | 60 78 80 | syl2anc |  | 
						
							| 82 | 81 | expr |  | 
						
							| 83 | 31 82 | sylan2b |  | 
						
							| 84 | 83 | rexlimdva |  | 
						
							| 85 | 30 84 | mpd |  | 
						
							| 86 | 85 | expr |  | 
						
							| 87 | 4 86 | sylan2 |  | 
						
							| 88 | 87 | ralrimiva |  | 
						
							| 89 | 1 | iscmp |  | 
						
							| 90 | 3 88 89 | sylanbrc |  |