Metamath Proof Explorer


Theorem cnfcom3

Description: Any infinite ordinal B is equinumerous to a power of _om . (We are being careful here to show explicit bijections rather than simple equinumerosity because we want a uniform construction for cnfcom3c .) (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 4-Jul-2019)

Ref Expression
Hypotheses cnfcom.s S=domωCNFA
cnfcom.a φAOn
cnfcom.b φBω𝑜A
cnfcom.f F=ωCNFA-1B
cnfcom.g G=OrdIsoEFsupp
cnfcom.h H=seqωkV,zVM+𝑜z
cnfcom.t T=seqωkV,fVK
cnfcom.m M=ω𝑜Gk𝑜FGk
cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
cnfcom.w W=GdomG
cnfcom3.1 φωB
cnfcom.x X=uFW,vω𝑜WFW𝑜v+𝑜u
cnfcom.y Y=uFW,vω𝑜Wω𝑜W𝑜u+𝑜v
cnfcom.n N=XY-1TdomG
Assertion cnfcom3 φN:B1-1 ontoω𝑜W

Proof

Step Hyp Ref Expression
1 cnfcom.s S=domωCNFA
2 cnfcom.a φAOn
3 cnfcom.b φBω𝑜A
4 cnfcom.f F=ωCNFA-1B
5 cnfcom.g G=OrdIsoEFsupp
6 cnfcom.h H=seqωkV,zVM+𝑜z
7 cnfcom.t T=seqωkV,fVK
8 cnfcom.m M=ω𝑜Gk𝑜FGk
9 cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
10 cnfcom.w W=GdomG
11 cnfcom3.1 φωB
12 cnfcom.x X=uFW,vω𝑜WFW𝑜v+𝑜u
13 cnfcom.y Y=uFW,vω𝑜Wω𝑜W𝑜u+𝑜v
14 cnfcom.n N=XY-1TdomG
15 omelon ωOn
16 suppssdm FsuppdomF
17 15 a1i φωOn
18 1 17 2 cantnff1o φωCNFA:S1-1 ontoω𝑜A
19 f1ocnv ωCNFA:S1-1 ontoω𝑜AωCNFA-1:ω𝑜A1-1 ontoS
20 f1of ωCNFA-1:ω𝑜A1-1 ontoSωCNFA-1:ω𝑜AS
21 18 19 20 3syl φωCNFA-1:ω𝑜AS
22 21 3 ffvelcdmd φωCNFA-1BS
23 4 22 eqeltrid φFS
24 1 17 2 cantnfs φFSF:AωfinSuppF
25 23 24 mpbid φF:AωfinSuppF
26 25 simpld φF:Aω
27 16 26 fssdm φFsuppA
28 ovex FsuppV
29 5 oion FsuppVdomGOn
30 28 29 ax-mp domGOn
31 30 elexi domGV
32 31 uniex domGV
33 32 sucid domGsucdomG
34 peano1 ω
35 34 a1i φω
36 11 35 sseldd φB
37 1 2 3 4 5 6 7 8 9 10 36 cnfcom2lem φdomG=sucdomG
38 33 37 eleqtrrid φdomGdomG
39 5 oif G:domGFsupp
40 39 ffvelcdmi domGdomGGdomGsuppF
41 38 40 syl φGdomGsuppF
42 10 41 eqeltrid φWsuppF
43 27 42 sseldd φWA
44 onelon AOnWAWOn
45 2 43 44 syl2anc φWOn
46 oecl ωOnWOnω𝑜WOn
47 15 45 46 sylancr φω𝑜WOn
48 26 43 ffvelcdmd φFWω
49 nnon FWωFWOn
50 48 49 syl φFWOn
51 13 12 omf1o ω𝑜WOnFWOnXY-1:ω𝑜W𝑜FW1-1 ontoFW𝑜ω𝑜W
52 47 50 51 syl2anc φXY-1:ω𝑜W𝑜FW1-1 ontoFW𝑜ω𝑜W
53 26 ffnd φFFnA
54 0ex V
55 54 a1i φV
56 elsuppfn FFnAAOnVWsuppFWAFW
57 53 2 55 56 syl3anc φWsuppFWAFW
58 simpr WAFWFW
59 57 58 biimtrdi φWsuppFFW
60 42 59 mpd φFW
61 on0eln0 FWOnFWFW
62 48 49 61 3syl φFWFW
63 60 62 mpbird φFW
64 1 2 3 4 5 6 7 8 9 10 11 cnfcom3lem φWOn1𝑜
65 ondif1 WOn1𝑜WOnW
66 65 simprbi WOn1𝑜W
67 64 66 syl φW
68 omabs FWωFWWOnWFW𝑜ω𝑜W=ω𝑜W
69 48 63 45 67 68 syl22anc φFW𝑜ω𝑜W=ω𝑜W
70 69 f1oeq3d φXY-1:ω𝑜W𝑜FW1-1 ontoFW𝑜ω𝑜WXY-1:ω𝑜W𝑜FW1-1 ontoω𝑜W
71 52 70 mpbid φXY-1:ω𝑜W𝑜FW1-1 ontoω𝑜W
72 1 2 3 4 5 6 7 8 9 10 36 cnfcom2 φTdomG:B1-1 ontoω𝑜W𝑜FW
73 f1oco XY-1:ω𝑜W𝑜FW1-1 ontoω𝑜WTdomG:B1-1 ontoω𝑜W𝑜FWXY-1TdomG:B1-1 ontoω𝑜W
74 71 72 73 syl2anc φXY-1TdomG:B1-1 ontoω𝑜W
75 f1oeq1 N=XY-1TdomGN:B1-1 ontoω𝑜WXY-1TdomG:B1-1 ontoω𝑜W
76 14 75 ax-mp N:B1-1 ontoω𝑜WXY-1TdomG:B1-1 ontoω𝑜W
77 74 76 sylibr φN:B1-1 ontoω𝑜W