Description: The preimage of a Hausdorff topology under an injective map is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnhaus | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 | |
|
2 | 1 | 3ad2ant3 | |
3 | simpl1 | |
|
4 | simpl3 | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 | cnf | |
8 | 4 7 | syl | |
9 | simprll | |
|
10 | 8 9 | ffvelcdmd | |
11 | simprlr | |
|
12 | 8 11 | ffvelcdmd | |
13 | simprr | |
|
14 | simpl2 | |
|
15 | 8 | fdmd | |
16 | f1dm | |
|
17 | 14 16 | syl | |
18 | 15 17 | eqtr3d | |
19 | 9 18 | eleqtrd | |
20 | 11 18 | eleqtrd | |
21 | f1fveq | |
|
22 | 14 19 20 21 | syl12anc | |
23 | 22 | necon3bid | |
24 | 13 23 | mpbird | |
25 | 6 | hausnei | |
26 | 3 10 12 24 25 | syl13anc | |
27 | simpll3 | |
|
28 | simprll | |
|
29 | cnima | |
|
30 | 27 28 29 | syl2anc | |
31 | simprlr | |
|
32 | cnima | |
|
33 | 27 31 32 | syl2anc | |
34 | 9 | adantr | |
35 | simprr1 | |
|
36 | 8 | adantr | |
37 | 36 | ffnd | |
38 | elpreima | |
|
39 | 37 38 | syl | |
40 | 34 35 39 | mpbir2and | |
41 | 11 | adantr | |
42 | simprr2 | |
|
43 | elpreima | |
|
44 | 37 43 | syl | |
45 | 41 42 44 | mpbir2and | |
46 | ffun | |
|
47 | inpreima | |
|
48 | 36 46 47 | 3syl | |
49 | simprr3 | |
|
50 | 49 | imaeq2d | |
51 | ima0 | |
|
52 | 50 51 | eqtrdi | |
53 | 48 52 | eqtr3d | |
54 | eleq2 | |
|
55 | ineq1 | |
|
56 | 55 | eqeq1d | |
57 | 54 56 | 3anbi13d | |
58 | eleq2 | |
|
59 | ineq2 | |
|
60 | 59 | eqeq1d | |
61 | 58 60 | 3anbi23d | |
62 | 57 61 | rspc2ev | |
63 | 30 33 40 45 53 62 | syl113anc | |
64 | 63 | expr | |
65 | 64 | rexlimdvva | |
66 | 26 65 | mpd | |
67 | 66 | expr | |
68 | 67 | ralrimivva | |
69 | 5 | ishaus | |
70 | 2 68 69 | sylanbrc | |