Metamath Proof Explorer


Theorem cnhaus

Description: The preimage of a Hausdorff topology under an injective map is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion cnhaus KHausF:X1-1YFJCnKJHaus

Proof

Step Hyp Ref Expression
1 cntop1 FJCnKJTop
2 1 3ad2ant3 KHausF:X1-1YFJCnKJTop
3 simpl1 KHausF:X1-1YFJCnKxJyJxyKHaus
4 simpl3 KHausF:X1-1YFJCnKxJyJxyFJCnK
5 eqid J=J
6 eqid K=K
7 5 6 cnf FJCnKF:JK
8 4 7 syl KHausF:X1-1YFJCnKxJyJxyF:JK
9 simprll KHausF:X1-1YFJCnKxJyJxyxJ
10 8 9 ffvelcdmd KHausF:X1-1YFJCnKxJyJxyFxK
11 simprlr KHausF:X1-1YFJCnKxJyJxyyJ
12 8 11 ffvelcdmd KHausF:X1-1YFJCnKxJyJxyFyK
13 simprr KHausF:X1-1YFJCnKxJyJxyxy
14 simpl2 KHausF:X1-1YFJCnKxJyJxyF:X1-1Y
15 8 fdmd KHausF:X1-1YFJCnKxJyJxydomF=J
16 f1dm F:X1-1YdomF=X
17 14 16 syl KHausF:X1-1YFJCnKxJyJxydomF=X
18 15 17 eqtr3d KHausF:X1-1YFJCnKxJyJxyJ=X
19 9 18 eleqtrd KHausF:X1-1YFJCnKxJyJxyxX
20 11 18 eleqtrd KHausF:X1-1YFJCnKxJyJxyyX
21 f1fveq F:X1-1YxXyXFx=Fyx=y
22 14 19 20 21 syl12anc KHausF:X1-1YFJCnKxJyJxyFx=Fyx=y
23 22 necon3bid KHausF:X1-1YFJCnKxJyJxyFxFyxy
24 13 23 mpbird KHausF:X1-1YFJCnKxJyJxyFxFy
25 6 hausnei KHausFxKFyKFxFyuKvKFxuFyvuv=
26 3 10 12 24 25 syl13anc KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=
27 simpll3 KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=FJCnK
28 simprll KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=uK
29 cnima FJCnKuKF-1uJ
30 27 28 29 syl2anc KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=F-1uJ
31 simprlr KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=vK
32 cnima FJCnKvKF-1vJ
33 27 31 32 syl2anc KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=F-1vJ
34 9 adantr KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=xJ
35 simprr1 KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=Fxu
36 8 adantr KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=F:JK
37 36 ffnd KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=FFnJ
38 elpreima FFnJxF-1uxJFxu
39 37 38 syl KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=xF-1uxJFxu
40 34 35 39 mpbir2and KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=xF-1u
41 11 adantr KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=yJ
42 simprr2 KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=Fyv
43 elpreima FFnJyF-1vyJFyv
44 37 43 syl KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=yF-1vyJFyv
45 41 42 44 mpbir2and KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=yF-1v
46 ffun F:JKFunF
47 inpreima FunFF-1uv=F-1uF-1v
48 36 46 47 3syl KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=F-1uv=F-1uF-1v
49 simprr3 KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=uv=
50 49 imaeq2d KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=F-1uv=F-1
51 ima0 F-1=
52 50 51 eqtrdi KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=F-1uv=
53 48 52 eqtr3d KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=F-1uF-1v=
54 eleq2 m=F-1uxmxF-1u
55 ineq1 m=F-1umn=F-1un
56 55 eqeq1d m=F-1umn=F-1un=
57 54 56 3anbi13d m=F-1uxmynmn=xF-1uynF-1un=
58 eleq2 n=F-1vynyF-1v
59 ineq2 n=F-1vF-1un=F-1uF-1v
60 59 eqeq1d n=F-1vF-1un=F-1uF-1v=
61 58 60 3anbi23d n=F-1vxF-1uynF-1un=xF-1uyF-1vF-1uF-1v=
62 57 61 rspc2ev F-1uJF-1vJxF-1uyF-1vF-1uF-1v=mJnJxmynmn=
63 30 33 40 45 53 62 syl113anc KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=mJnJxmynmn=
64 63 expr KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=mJnJxmynmn=
65 64 rexlimdvva KHausF:X1-1YFJCnKxJyJxyuKvKFxuFyvuv=mJnJxmynmn=
66 26 65 mpd KHausF:X1-1YFJCnKxJyJxymJnJxmynmn=
67 66 expr KHausF:X1-1YFJCnKxJyJxymJnJxmynmn=
68 67 ralrimivva KHausF:X1-1YFJCnKxJyJxymJnJxmynmn=
69 5 ishaus JHausJTopxJyJxymJnJxmynmn=
70 2 68 69 sylanbrc KHausF:X1-1YFJCnKJHaus