Metamath Proof Explorer


Theorem coe1sclmul2

Description: Coefficient vector of a polynomial multiplied on the right by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses coe1sclmul.p P=Poly1R
coe1sclmul.b B=BaseP
coe1sclmul.k K=BaseR
coe1sclmul.a A=algScP
coe1sclmul.t ˙=P
coe1sclmul.u ·˙=R
Assertion coe1sclmul2 RRingXKYBcoe1Y˙AX=coe1Y·˙f0×X

Proof

Step Hyp Ref Expression
1 coe1sclmul.p P=Poly1R
2 coe1sclmul.b B=BaseP
3 coe1sclmul.k K=BaseR
4 coe1sclmul.a A=algScP
5 coe1sclmul.t ˙=P
6 coe1sclmul.u ·˙=R
7 eqid 0R=0R
8 eqid var1R=var1R
9 eqid P=P
10 eqid mulGrpP=mulGrpP
11 eqid mulGrpP=mulGrpP
12 simp3 RRingXKYBYB
13 simp1 RRingXKYBRRing
14 simp2 RRingXKYBXK
15 0nn0 00
16 15 a1i RRingXKYB00
17 7 3 1 8 9 10 11 2 5 6 12 13 14 16 coe1tmmul2 RRingXKYBcoe1Y˙XP0mulGrpPvar1R=x0if0xcoe1Yx0·˙X0R
18 3 1 8 9 10 11 4 ply1scltm RRingXKAX=XP0mulGrpPvar1R
19 18 3adant3 RRingXKYBAX=XP0mulGrpPvar1R
20 19 oveq2d RRingXKYBY˙AX=Y˙XP0mulGrpPvar1R
21 20 fveq2d RRingXKYBcoe1Y˙AX=coe1Y˙XP0mulGrpPvar1R
22 nn0ex 0V
23 22 a1i RRingXKYB0V
24 fvexd RRingXKYBx0coe1YxV
25 simpl2 RRingXKYBx0XK
26 eqid coe1Y=coe1Y
27 26 2 1 3 coe1f YBcoe1Y:0K
28 27 feqmptd YBcoe1Y=x0coe1Yx
29 28 3ad2ant3 RRingXKYBcoe1Y=x0coe1Yx
30 fconstmpt 0×X=x0X
31 30 a1i RRingXKYB0×X=x0X
32 23 24 25 29 31 offval2 RRingXKYBcoe1Y·˙f0×X=x0coe1Yx·˙X
33 nn0ge0 x00x
34 33 iftrued x0if0xcoe1Yx0·˙X0R=coe1Yx0·˙X
35 nn0cn x0x
36 35 subid1d x0x0=x
37 36 fveq2d x0coe1Yx0=coe1Yx
38 37 oveq1d x0coe1Yx0·˙X=coe1Yx·˙X
39 34 38 eqtrd x0if0xcoe1Yx0·˙X0R=coe1Yx·˙X
40 39 mpteq2ia x0if0xcoe1Yx0·˙X0R=x0coe1Yx·˙X
41 32 40 eqtr4di RRingXKYBcoe1Y·˙f0×X=x0if0xcoe1Yx0·˙X0R
42 17 21 41 3eqtr4d RRingXKYBcoe1Y˙AX=coe1Y·˙f0×X