Description: If C is cofinal with A and D is coinitial with B and the cut of A and B lies between C and D , then the cut of C and D is equal to the cut of A and B . Theorem 2.6 of Gonshor p. 10. (Contributed by Scott Fenton, 25-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | cofcut1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l | |
|
2 | simp3r | |
|
3 | simp1 | |
|
4 | scutbday | |
|
5 | 3 4 | syl | |
6 | ssltex1 | |
|
7 | 3 6 | syl | |
8 | 7 | ad2antrr | |
9 | ssltss1 | |
|
10 | 3 9 | syl | |
11 | 10 | ad2antrr | |
12 | 8 11 | elpwd | |
13 | simpl2l | |
|
14 | 13 | adantr | |
15 | simpr | |
|
16 | cofsslt | |
|
17 | 12 14 15 16 | syl3anc | |
18 | 17 | ex | |
19 | ssltex2 | |
|
20 | 3 19 | syl | |
21 | 20 | ad2antrr | |
22 | ssltss2 | |
|
23 | 3 22 | syl | |
24 | 23 | ad2antrr | |
25 | 21 24 | elpwd | |
26 | simpl2r | |
|
27 | 26 | adantr | |
28 | simpr | |
|
29 | coinitsslt | |
|
30 | 25 27 28 29 | syl3anc | |
31 | 30 | ex | |
32 | 18 31 | anim12d | |
33 | 32 | ss2rabdv | |
34 | imass2 | |
|
35 | intss | |
|
36 | 33 34 35 | 3syl | |
37 | 5 36 | eqsstrd | |
38 | bdayfn | |
|
39 | ssrab2 | |
|
40 | sneq | |
|
41 | 40 | breq2d | |
42 | 40 | breq1d | |
43 | 41 42 | anbi12d | |
44 | 3 | scutcld | |
45 | simp3 | |
|
46 | 43 44 45 | elrabd | |
47 | fnfvima | |
|
48 | 38 39 46 47 | mp3an12i | |
49 | intss1 | |
|
50 | 48 49 | syl | |
51 | 37 50 | eqssd | |
52 | ovex | |
|
53 | 52 | snnz | |
54 | sslttr | |
|
55 | 53 54 | mp3an3 | |
56 | 55 | 3ad2ant3 | |
57 | eqscut | |
|
58 | 56 44 57 | syl2anc | |
59 | 1 2 51 58 | mpbir3and | |
60 | 59 | eqcomd | |