Metamath Proof Explorer


Theorem cofcut1

Description: If C is cofinal with A and D is coinitial with B and the cut of A and B lies between C and D , then the cut of C and D is equal to the cut of A and B . Theorem 2.6 of Gonshor p. 10. (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Assertion cofcut1 AsBxAyCxsyzBwDwszCsA|sBA|sBsDA|sB=C|sD

Proof

Step Hyp Ref Expression
1 simp3l AsBxAyCxsyzBwDwszCsA|sBA|sBsDCsA|sB
2 simp3r AsBxAyCxsyzBwDwszCsA|sBA|sBsDA|sBsD
3 simp1 AsBxAyCxsyzBwDwszCsA|sBA|sBsDAsB
4 scutbday AsBbdayA|sB=bdaytNo|AsttsB
5 3 4 syl AsBxAyCxsyzBwDwszCsA|sBA|sBsDbdayA|sB=bdaytNo|AsttsB
6 ssltex1 AsBAV
7 3 6 syl AsBxAyCxsyzBwDwszCsA|sBA|sBsDAV
8 7 ad2antrr AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNoCstAV
9 ssltss1 AsBANo
10 3 9 syl AsBxAyCxsyzBwDwszCsA|sBA|sBsDANo
11 10 ad2antrr AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNoCstANo
12 8 11 elpwd AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNoCstA𝒫No
13 simpl2l AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNoxAyCxsy
14 13 adantr AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNoCstxAyCxsy
15 simpr AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNoCstCst
16 cofsslt A𝒫NoxAyCxsyCstAst
17 12 14 15 16 syl3anc AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNoCstAst
18 17 ex AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNoCstAst
19 ssltex2 AsBBV
20 3 19 syl AsBxAyCxsyzBwDwszCsA|sBA|sBsDBV
21 20 ad2antrr AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNotsDBV
22 ssltss2 AsBBNo
23 3 22 syl AsBxAyCxsyzBwDwszCsA|sBA|sBsDBNo
24 23 ad2antrr AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNotsDBNo
25 21 24 elpwd AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNotsDB𝒫No
26 simpl2r AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNozBwDwsz
27 26 adantr AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNotsDzBwDwsz
28 simpr AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNotsDtsD
29 coinitsslt B𝒫NozBwDwsztsDtsB
30 25 27 28 29 syl3anc AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNotsDtsB
31 30 ex AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNotsDtsB
32 18 31 anim12d AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNoCsttsDAsttsB
33 32 ss2rabdv AsBxAyCxsyzBwDwszCsA|sBA|sBsDtNo|CsttsDtNo|AsttsB
34 imass2 tNo|CsttsDtNo|AsttsBbdaytNo|CsttsDbdaytNo|AsttsB
35 intss bdaytNo|CsttsDbdaytNo|AsttsBbdaytNo|AsttsBbdaytNo|CsttsD
36 33 34 35 3syl AsBxAyCxsyzBwDwszCsA|sBA|sBsDbdaytNo|AsttsBbdaytNo|CsttsD
37 5 36 eqsstrd AsBxAyCxsyzBwDwszCsA|sBA|sBsDbdayA|sBbdaytNo|CsttsD
38 bdayfn bdayFnNo
39 ssrab2 tNo|CsttsDNo
40 sneq t=A|sBt=A|sB
41 40 breq2d t=A|sBCstCsA|sB
42 40 breq1d t=A|sBtsDA|sBsD
43 41 42 anbi12d t=A|sBCsttsDCsA|sBA|sBsD
44 3 scutcld AsBxAyCxsyzBwDwszCsA|sBA|sBsDA|sBNo
45 simp3 AsBxAyCxsyzBwDwszCsA|sBA|sBsDCsA|sBA|sBsD
46 43 44 45 elrabd AsBxAyCxsyzBwDwszCsA|sBA|sBsDA|sBtNo|CsttsD
47 fnfvima bdayFnNotNo|CsttsDNoA|sBtNo|CsttsDbdayA|sBbdaytNo|CsttsD
48 38 39 46 47 mp3an12i AsBxAyCxsyzBwDwszCsA|sBA|sBsDbdayA|sBbdaytNo|CsttsD
49 intss1 bdayA|sBbdaytNo|CsttsDbdaytNo|CsttsDbdayA|sB
50 48 49 syl AsBxAyCxsyzBwDwszCsA|sBA|sBsDbdaytNo|CsttsDbdayA|sB
51 37 50 eqssd AsBxAyCxsyzBwDwszCsA|sBA|sBsDbdayA|sB=bdaytNo|CsttsD
52 ovex A|sBV
53 52 snnz A|sB
54 sslttr CsA|sBA|sBsDA|sBCsD
55 53 54 mp3an3 CsA|sBA|sBsDCsD
56 55 3ad2ant3 AsBxAyCxsyzBwDwszCsA|sBA|sBsDCsD
57 eqscut CsDA|sBNoC|sD=A|sBCsA|sBA|sBsDbdayA|sB=bdaytNo|CsttsD
58 56 44 57 syl2anc AsBxAyCxsyzBwDwszCsA|sBA|sBsDC|sD=A|sBCsA|sBA|sBsDbdayA|sB=bdaytNo|CsttsD
59 1 2 51 58 mpbir3and AsBxAyCxsyzBwDwszCsA|sBA|sBsDC|sD=A|sB
60 59 eqcomd AsBxAyCxsyzBwDwszCsA|sBA|sBsDA|sB=C|sD