Metamath Proof Explorer


Theorem cply1coe0bi

Description: A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses cply1coe0.k K=BaseR
cply1coe0.0 0˙=0R
cply1coe0.p P=Poly1R
cply1coe0.b B=BaseP
cply1coe0.a A=algScP
Assertion cply1coe0bi RRingMBsKM=Asncoe1Mn=0˙

Proof

Step Hyp Ref Expression
1 cply1coe0.k K=BaseR
2 cply1coe0.0 0˙=0R
3 cply1coe0.p P=Poly1R
4 cply1coe0.b B=BaseP
5 cply1coe0.a A=algScP
6 1 2 3 4 5 cply1coe0 RRingsKncoe1Asn=0˙
7 6 ad4ant13 RRingMBsKM=Asncoe1Asn=0˙
8 fveq2 M=Ascoe1M=coe1As
9 8 fveq1d M=Ascoe1Mn=coe1Asn
10 9 eqeq1d M=Ascoe1Mn=0˙coe1Asn=0˙
11 10 ralbidv M=Asncoe1Mn=0˙ncoe1Asn=0˙
12 11 adantl RRingMBsKM=Asncoe1Mn=0˙ncoe1Asn=0˙
13 7 12 mpbird RRingMBsKM=Asncoe1Mn=0˙
14 13 rexlimdva2 RRingMBsKM=Asncoe1Mn=0˙
15 simpr RRingMBMB
16 0nn0 00
17 eqid coe1M=coe1M
18 17 4 3 1 coe1fvalcl MB00coe1M0K
19 15 16 18 sylancl RRingMBcoe1M0K
20 19 adantr RRingMBncoe1Mn=0˙coe1M0K
21 fveq2 s=coe1M0As=Acoe1M0
22 21 eqeq2d s=coe1M0M=AsM=Acoe1M0
23 22 adantl RRingMBncoe1Mn=0˙s=coe1M0M=AsM=Acoe1M0
24 simpl RRingMBRRing
25 eqid ScalarP=ScalarP
26 3 ply1ring RRingPRing
27 3 ply1lmod RRingPLMod
28 eqid BaseScalarP=BaseScalarP
29 5 25 26 27 28 4 asclf RRingA:BaseScalarPB
30 29 adantr RRingMBA:BaseScalarPB
31 eqid BaseR=BaseR
32 17 4 3 31 coe1fvalcl MB00coe1M0BaseR
33 15 16 32 sylancl RRingMBcoe1M0BaseR
34 3 ply1sca RRingR=ScalarP
35 34 eqcomd RRingScalarP=R
36 35 fveq2d RRingBaseScalarP=BaseR
37 36 adantr RRingMBBaseScalarP=BaseR
38 33 37 eleqtrrd RRingMBcoe1M0BaseScalarP
39 30 38 ffvelcdmd RRingMBAcoe1M0B
40 24 15 39 3jca RRingMBRRingMBAcoe1M0B
41 40 adantr RRingMBncoe1Mn=0˙RRingMBAcoe1M0B
42 simpr RRingMBncoe1Mn=0˙coe1Mn=0˙
43 3 5 1 2 coe1scl RRingcoe1M0Kcoe1Acoe1M0=k0ifk=0coe1M00˙
44 19 43 syldan RRingMBcoe1Acoe1M0=k0ifk=0coe1M00˙
45 44 adantr RRingMBncoe1Acoe1M0=k0ifk=0coe1M00˙
46 nnne0 nn0
47 46 neneqd n¬n=0
48 47 adantl RRingMBn¬n=0
49 48 adantr RRingMBnk=n¬n=0
50 eqeq1 k=nk=0n=0
51 50 notbid k=n¬k=0¬n=0
52 51 adantl RRingMBnk=n¬k=0¬n=0
53 49 52 mpbird RRingMBnk=n¬k=0
54 53 iffalsed RRingMBnk=nifk=0coe1M00˙=0˙
55 nnnn0 nn0
56 55 adantl RRingMBnn0
57 2 fvexi 0˙V
58 57 a1i RRingMBn0˙V
59 45 54 56 58 fvmptd RRingMBncoe1Acoe1M0n=0˙
60 59 eqcomd RRingMBn0˙=coe1Acoe1M0n
61 60 adantr RRingMBncoe1Mn=0˙0˙=coe1Acoe1M0n
62 42 61 eqtrd RRingMBncoe1Mn=0˙coe1Mn=coe1Acoe1M0n
63 62 ex RRingMBncoe1Mn=0˙coe1Mn=coe1Acoe1M0n
64 63 ralimdva RRingMBncoe1Mn=0˙ncoe1Mn=coe1Acoe1M0n
65 64 imp RRingMBncoe1Mn=0˙ncoe1Mn=coe1Acoe1M0n
66 3 5 1 ply1sclid RRingcoe1M0Kcoe1M0=coe1Acoe1M00
67 19 66 syldan RRingMBcoe1M0=coe1Acoe1M00
68 67 adantr RRingMBncoe1Mn=0˙coe1M0=coe1Acoe1M00
69 df-n0 0=0
70 69 raleqi n0coe1Mn=coe1Acoe1M0nn0coe1Mn=coe1Acoe1M0n
71 c0ex 0V
72 fveq2 n=0coe1Mn=coe1M0
73 fveq2 n=0coe1Acoe1M0n=coe1Acoe1M00
74 72 73 eqeq12d n=0coe1Mn=coe1Acoe1M0ncoe1M0=coe1Acoe1M00
75 74 ralunsn 0Vn0coe1Mn=coe1Acoe1M0nncoe1Mn=coe1Acoe1M0ncoe1M0=coe1Acoe1M00
76 71 75 mp1i RRingMBncoe1Mn=0˙n0coe1Mn=coe1Acoe1M0nncoe1Mn=coe1Acoe1M0ncoe1M0=coe1Acoe1M00
77 70 76 bitrid RRingMBncoe1Mn=0˙n0coe1Mn=coe1Acoe1M0nncoe1Mn=coe1Acoe1M0ncoe1M0=coe1Acoe1M00
78 65 68 77 mpbir2and RRingMBncoe1Mn=0˙n0coe1Mn=coe1Acoe1M0n
79 eqid coe1Acoe1M0=coe1Acoe1M0
80 3 4 17 79 eqcoe1ply1eq RRingMBAcoe1M0Bn0coe1Mn=coe1Acoe1M0nM=Acoe1M0
81 41 78 80 sylc RRingMBncoe1Mn=0˙M=Acoe1M0
82 20 23 81 rspcedvd RRingMBncoe1Mn=0˙sKM=As
83 82 ex RRingMBncoe1Mn=0˙sKM=As
84 14 83 impbid RRingMBsKM=Asncoe1Mn=0˙