| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crctcshwlkn0lem.s |
|
| 2 |
|
crctcshwlkn0lem.q |
|
| 3 |
|
breq1 |
|
| 4 |
|
fvoveq1 |
|
| 5 |
|
oveq1 |
|
| 6 |
5
|
fvoveq1d |
|
| 7 |
3 4 6
|
ifbieq12d |
|
| 8 |
|
0zd |
|
| 9 |
|
elfzoel2 |
|
| 10 |
|
elfzoelz |
|
| 11 |
9 10
|
zsubcld |
|
| 12 |
11
|
peano2zd |
|
| 13 |
|
elfzo1 |
|
| 14 |
|
nnre |
|
| 15 |
|
nnre |
|
| 16 |
|
posdif |
|
| 17 |
|
0red |
|
| 18 |
|
resubcl |
|
| 19 |
18
|
ancoms |
|
| 20 |
|
ltle |
|
| 21 |
17 19 20
|
syl2anc |
|
| 22 |
19
|
lep1d |
|
| 23 |
|
1red |
|
| 24 |
19 23
|
readdcld |
|
| 25 |
|
letr |
|
| 26 |
17 19 24 25
|
syl3anc |
|
| 27 |
22 26
|
mpan2d |
|
| 28 |
21 27
|
syld |
|
| 29 |
16 28
|
sylbid |
|
| 30 |
14 15 29
|
syl2an |
|
| 31 |
30
|
3impia |
|
| 32 |
13 31
|
sylbi |
|
| 33 |
|
eluz2 |
|
| 34 |
8 12 32 33
|
syl3anbrc |
|
| 35 |
1 34
|
syl |
|
| 36 |
|
fzss1 |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
sselda |
|
| 39 |
|
fvex |
|
| 40 |
|
fvex |
|
| 41 |
39 40
|
ifex |
|
| 42 |
41
|
a1i |
|
| 43 |
2 7 38 42
|
fvmptd3 |
|
| 44 |
|
elfz2 |
|
| 45 |
|
zre |
|
| 46 |
|
zre |
|
| 47 |
|
zre |
|
| 48 |
46 47
|
anim12i |
|
| 49 |
|
simprr |
|
| 50 |
|
simpl |
|
| 51 |
49 50
|
resubcld |
|
| 52 |
51
|
ltp1d |
|
| 53 |
|
1red |
|
| 54 |
51 53
|
readdcld |
|
| 55 |
|
simprl |
|
| 56 |
|
ltletr |
|
| 57 |
51 54 55 56
|
syl3anc |
|
| 58 |
52 57
|
mpand |
|
| 59 |
51 55
|
ltnled |
|
| 60 |
58 59
|
sylibd |
|
| 61 |
45 48 60
|
syl2an |
|
| 62 |
61
|
expcom |
|
| 63 |
62
|
ancoms |
|
| 64 |
63
|
3adant1 |
|
| 65 |
10 64
|
syl5com |
|
| 66 |
65
|
com13 |
|
| 67 |
66
|
adantr |
|
| 68 |
67
|
impcom |
|
| 69 |
68
|
com12 |
|
| 70 |
44 69
|
biimtrid |
|
| 71 |
1 70
|
syl |
|
| 72 |
71
|
imp |
|
| 73 |
72
|
iffalsed |
|
| 74 |
43 73
|
eqtrd |
|