Metamath Proof Explorer


Theorem crctcshwlkn0lem3

Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)

Ref Expression
Hypotheses crctcshwlkn0lem.s φS1..^N
crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
Assertion crctcshwlkn0lem3 φJN-S+1NQJ=PJ+S-N

Proof

Step Hyp Ref Expression
1 crctcshwlkn0lem.s φS1..^N
2 crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
3 breq1 x=JxNSJNS
4 fvoveq1 x=JPx+S=PJ+S
5 oveq1 x=Jx+S=J+S
6 5 fvoveq1d x=JPx+S-N=PJ+S-N
7 3 4 6 ifbieq12d x=JifxNSPx+SPx+S-N=ifJNSPJ+SPJ+S-N
8 0zd S1..^N0
9 elfzoel2 S1..^NN
10 elfzoelz S1..^NS
11 9 10 zsubcld S1..^NNS
12 11 peano2zd S1..^NN-S+1
13 elfzo1 S1..^NSNS<N
14 nnre SS
15 nnre NN
16 posdif SNS<N0<NS
17 0red SN0
18 resubcl NSNS
19 18 ancoms SNNS
20 ltle 0NS0<NS0NS
21 17 19 20 syl2anc SN0<NS0NS
22 19 lep1d SNNSN-S+1
23 1red SN1
24 19 23 readdcld SNN-S+1
25 letr 0NSN-S+10NSNSN-S+10N-S+1
26 17 19 24 25 syl3anc SN0NSNSN-S+10N-S+1
27 22 26 mpan2d SN0NS0N-S+1
28 21 27 syld SN0<NS0N-S+1
29 16 28 sylbid SNS<N0N-S+1
30 14 15 29 syl2an SNS<N0N-S+1
31 30 3impia SNS<N0N-S+1
32 13 31 sylbi S1..^N0N-S+1
33 eluz2 N-S+100N-S+10N-S+1
34 8 12 32 33 syl3anbrc S1..^NN-S+10
35 1 34 syl φN-S+10
36 fzss1 N-S+10N-S+1N0N
37 35 36 syl φN-S+1N0N
38 37 sselda φJN-S+1NJ0N
39 fvex PJ+SV
40 fvex PJ+S-NV
41 39 40 ifex ifJNSPJ+SPJ+S-NV
42 41 a1i φJN-S+1NifJNSPJ+SPJ+S-NV
43 2 7 38 42 fvmptd3 φJN-S+1NQJ=ifJNSPJ+SPJ+S-N
44 elfz2 JN-S+1NN-S+1NJN-S+1JJN
45 zre SS
46 zre JJ
47 zre NN
48 46 47 anim12i JNJN
49 simprr SJNN
50 simpl SJNS
51 49 50 resubcld SJNNS
52 51 ltp1d SJNNS<N-S+1
53 1red SJN1
54 51 53 readdcld SJNN-S+1
55 simprl SJNJ
56 ltletr NSN-S+1JNS<N-S+1N-S+1JNS<J
57 51 54 55 56 syl3anc SJNNS<N-S+1N-S+1JNS<J
58 52 57 mpand SJNN-S+1JNS<J
59 51 55 ltnled SJNNS<J¬JNS
60 58 59 sylibd SJNN-S+1J¬JNS
61 45 48 60 syl2an SJNN-S+1J¬JNS
62 61 expcom JNSN-S+1J¬JNS
63 62 ancoms NJSN-S+1J¬JNS
64 63 3adant1 N-S+1NJSN-S+1J¬JNS
65 10 64 syl5com S1..^NN-S+1NJN-S+1J¬JNS
66 65 com13 N-S+1JN-S+1NJS1..^N¬JNS
67 66 adantr N-S+1JJNN-S+1NJS1..^N¬JNS
68 67 impcom N-S+1NJN-S+1JJNS1..^N¬JNS
69 68 com12 S1..^NN-S+1NJN-S+1JJN¬JNS
70 44 69 biimtrid S1..^NJN-S+1N¬JNS
71 1 70 syl φJN-S+1N¬JNS
72 71 imp φJN-S+1N¬JNS
73 72 iffalsed φJN-S+1NifJNSPJ+SPJ+S-N=PJ+S-N
74 43 73 eqtrd φJN-S+1NQJ=PJ+S-N