Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | crctcshwlkn0lem.s | |
|
crctcshwlkn0lem.q | |
||
Assertion | crctcshwlkn0lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcshwlkn0lem.s | |
|
2 | crctcshwlkn0lem.q | |
|
3 | breq1 | |
|
4 | fvoveq1 | |
|
5 | oveq1 | |
|
6 | 5 | fvoveq1d | |
7 | 3 4 6 | ifbieq12d | |
8 | 0zd | |
|
9 | elfzoel2 | |
|
10 | elfzoelz | |
|
11 | 9 10 | zsubcld | |
12 | 11 | peano2zd | |
13 | elfzo1 | |
|
14 | nnre | |
|
15 | nnre | |
|
16 | posdif | |
|
17 | 0red | |
|
18 | resubcl | |
|
19 | 18 | ancoms | |
20 | ltle | |
|
21 | 17 19 20 | syl2anc | |
22 | 19 | lep1d | |
23 | 1red | |
|
24 | 19 23 | readdcld | |
25 | letr | |
|
26 | 17 19 24 25 | syl3anc | |
27 | 22 26 | mpan2d | |
28 | 21 27 | syld | |
29 | 16 28 | sylbid | |
30 | 14 15 29 | syl2an | |
31 | 30 | 3impia | |
32 | 13 31 | sylbi | |
33 | eluz2 | |
|
34 | 8 12 32 33 | syl3anbrc | |
35 | 1 34 | syl | |
36 | fzss1 | |
|
37 | 35 36 | syl | |
38 | 37 | sselda | |
39 | fvex | |
|
40 | fvex | |
|
41 | 39 40 | ifex | |
42 | 41 | a1i | |
43 | 2 7 38 42 | fvmptd3 | |
44 | elfz2 | |
|
45 | zre | |
|
46 | zre | |
|
47 | zre | |
|
48 | 46 47 | anim12i | |
49 | simprr | |
|
50 | simpl | |
|
51 | 49 50 | resubcld | |
52 | 51 | ltp1d | |
53 | 1red | |
|
54 | 51 53 | readdcld | |
55 | simprl | |
|
56 | ltletr | |
|
57 | 51 54 55 56 | syl3anc | |
58 | 52 57 | mpand | |
59 | 51 55 | ltnled | |
60 | 58 59 | sylibd | |
61 | 45 48 60 | syl2an | |
62 | 61 | expcom | |
63 | 62 | ancoms | |
64 | 63 | 3adant1 | |
65 | 10 64 | syl5com | |
66 | 65 | com13 | |
67 | 66 | adantr | |
68 | 67 | impcom | |
69 | 68 | com12 | |
70 | 44 69 | biimtrid | |
71 | 1 70 | syl | |
72 | 71 | imp | |
73 | 72 | iffalsed | |
74 | 43 73 | eqtrd | |