Metamath Proof Explorer


Theorem cvmlift3

Description: A general version of cvmlift . If K is simply connected and weakly locally path-connected, then there is a unique lift of functions on K which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B=C
cvmlift3.y Y=K
cvmlift3.f φFCCovMapJ
cvmlift3.k φKSConn
cvmlift3.l φKN-Locally PConn
cvmlift3.o φOY
cvmlift3.g φGKCnJ
cvmlift3.p φPB
cvmlift3.e φFP=GO
Assertion cvmlift3 φ∃!fKCnCFf=GfO=P

Proof

Step Hyp Ref Expression
1 cvmlift3.b B=C
2 cvmlift3.y Y=K
3 cvmlift3.f φFCCovMapJ
4 cvmlift3.k φKSConn
5 cvmlift3.l φKN-Locally PConn
6 cvmlift3.o φOY
7 cvmlift3.g φGKCnJ
8 cvmlift3.p φPB
9 cvmlift3.e φFP=GO
10 eqeq2 b=zιdIICnC|Fd=Gcd0=P1=bιdIICnC|Fd=Gcd0=P1=z
11 10 3anbi3d b=zc0=Oc1=aιdIICnC|Fd=Gcd0=P1=bc0=Oc1=aιdIICnC|Fd=Gcd0=P1=z
12 11 rexbidv b=zcIICnKc0=Oc1=aιdIICnC|Fd=Gcd0=P1=bcIICnKc0=Oc1=aιdIICnC|Fd=Gcd0=P1=z
13 12 cbvriotavw ιbB|cIICnKc0=Oc1=aιdIICnC|Fd=Gcd0=P1=b=ιzB|cIICnKc0=Oc1=aιdIICnC|Fd=Gcd0=P1=z
14 fveq1 c=fc0=f0
15 14 eqeq1d c=fc0=Of0=O
16 fveq1 c=fc1=f1
17 16 eqeq1d c=fc1=af1=a
18 coeq2 d=gFd=Fg
19 18 eqeq1d d=gFd=GcFg=Gc
20 fveq1 d=gd0=g0
21 20 eqeq1d d=gd0=Pg0=P
22 19 21 anbi12d d=gFd=Gcd0=PFg=Gcg0=P
23 22 cbvriotavw ιdIICnC|Fd=Gcd0=P=ιgIICnC|Fg=Gcg0=P
24 coeq2 c=fGc=Gf
25 24 eqeq2d c=fFg=GcFg=Gf
26 25 anbi1d c=fFg=Gcg0=PFg=Gfg0=P
27 26 riotabidv c=fιgIICnC|Fg=Gcg0=P=ιgIICnC|Fg=Gfg0=P
28 23 27 eqtrid c=fιdIICnC|Fd=Gcd0=P=ιgIICnC|Fg=Gfg0=P
29 28 fveq1d c=fιdIICnC|Fd=Gcd0=P1=ιgIICnC|Fg=Gfg0=P1
30 29 eqeq1d c=fιdIICnC|Fd=Gcd0=P1=zιgIICnC|Fg=Gfg0=P1=z
31 15 17 30 3anbi123d c=fc0=Oc1=aιdIICnC|Fd=Gcd0=P1=zf0=Of1=aιgIICnC|Fg=Gfg0=P1=z
32 31 cbvrexvw cIICnKc0=Oc1=aιdIICnC|Fd=Gcd0=P1=zfIICnKf0=Of1=aιgIICnC|Fg=Gfg0=P1=z
33 eqeq2 a=xf1=af1=x
34 33 3anbi2d a=xf0=Of1=aιgIICnC|Fg=Gfg0=P1=zf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
35 34 rexbidv a=xfIICnKf0=Of1=aιgIICnC|Fg=Gfg0=P1=zfIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
36 32 35 bitrid a=xcIICnKc0=Oc1=aιdIICnC|Fd=Gcd0=P1=zfIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
37 36 riotabidv a=xιzB|cIICnKc0=Oc1=aιdIICnC|Fd=Gcd0=P1=z=ιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
38 13 37 eqtrid a=xιbB|cIICnKc0=Oc1=aιdIICnC|Fd=Gcd0=P1=b=ιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
39 38 cbvmptv aYιbB|cIICnKc0=Oc1=aιdIICnC|Fd=Gcd0=P1=b=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
40 eqid kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
41 40 cvmscbv kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k=aJb𝒫C|b=F-1avbubvvu=FvC𝑡vHomeoJ𝑡a
42 1 2 3 4 5 6 7 8 9 39 41 cvmlift3lem9 φfKCnCFf=GfO=P
43 sconnpconn KSConnKPConn
44 pconnconn KPConnKConn
45 4 43 44 3syl φKConn
46 pconnconn xPConnxConn
47 46 ssriv PConnConn
48 nllyss PConnConnN-Locally PConn N-Locally Conn
49 47 48 ax-mp N-Locally PConn N-Locally Conn
50 49 5 sselid φKN-Locally Conn
51 1 2 3 45 50 6 7 8 9 cvmliftmo φ*fKCnCFf=GfO=P
52 reu5 ∃!fKCnCFf=GfO=PfKCnCFf=GfO=P*fKCnCFf=GfO=P
53 42 51 52 sylanbrc φ∃!fKCnCFf=GfO=P