| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftpht.b |
|
| 2 |
|
cvmliftpht.m |
|
| 3 |
|
cvmliftpht.n |
|
| 4 |
|
cvmliftpht.f |
|
| 5 |
|
cvmliftpht.p |
|
| 6 |
|
cvmliftpht.e |
|
| 7 |
|
cvmliftpht.g |
|
| 8 |
|
isphtpc |
|
| 9 |
7 8
|
sylib |
|
| 10 |
9
|
simp1d |
|
| 11 |
1 2 4 10 5 6
|
cvmliftiota |
|
| 12 |
11
|
simp1d |
|
| 13 |
9
|
simp2d |
|
| 14 |
|
phtpc01 |
|
| 15 |
7 14
|
syl |
|
| 16 |
15
|
simpld |
|
| 17 |
6 16
|
eqtrd |
|
| 18 |
1 3 4 13 5 17
|
cvmliftiota |
|
| 19 |
18
|
simp1d |
|
| 20 |
9
|
simp3d |
|
| 21 |
|
n0 |
|
| 22 |
20 21
|
sylib |
|
| 23 |
4
|
adantr |
|
| 24 |
10 13
|
phtpycn |
|
| 25 |
24
|
sselda |
|
| 26 |
5
|
adantr |
|
| 27 |
6
|
adantr |
|
| 28 |
|
0elunit |
|
| 29 |
10
|
adantr |
|
| 30 |
13
|
adantr |
|
| 31 |
|
simpr |
|
| 32 |
29 30 31
|
phtpyi |
|
| 33 |
28 32
|
mpan2 |
|
| 34 |
33
|
simpld |
|
| 35 |
27 34
|
eqtr4d |
|
| 36 |
1 23 25 26 35
|
cvmlift2 |
|
| 37 |
|
reurex |
|
| 38 |
36 37
|
syl |
|
| 39 |
4
|
ad2antrr |
|
| 40 |
5
|
ad2antrr |
|
| 41 |
6
|
ad2antrr |
|
| 42 |
10
|
ad2antrr |
|
| 43 |
13
|
ad2antrr |
|
| 44 |
|
simplr |
|
| 45 |
|
simprl |
|
| 46 |
|
simprrl |
|
| 47 |
|
simprrr |
|
| 48 |
1 2 3 39 40 41 42 43 44 45 46 47
|
cvmliftphtlem |
|
| 49 |
48
|
ne0d |
|
| 50 |
38 49
|
rexlimddv |
|
| 51 |
22 50
|
exlimddv |
|
| 52 |
|
isphtpc |
|
| 53 |
12 19 51 52
|
syl3anbrc |
|