Metamath Proof Explorer


Theorem cvmliftpht

Description: If G and H are path-homotopic, then their lifts M and N are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmliftpht.b B = C
cvmliftpht.m M = ι f II Cn C | F f = G f 0 = P
cvmliftpht.n N = ι f II Cn C | F f = H f 0 = P
cvmliftpht.f φ F C CovMap J
cvmliftpht.p φ P B
cvmliftpht.e φ F P = G 0
cvmliftpht.g φ G ph J H
Assertion cvmliftpht φ M ph C N

Proof

Step Hyp Ref Expression
1 cvmliftpht.b B = C
2 cvmliftpht.m M = ι f II Cn C | F f = G f 0 = P
3 cvmliftpht.n N = ι f II Cn C | F f = H f 0 = P
4 cvmliftpht.f φ F C CovMap J
5 cvmliftpht.p φ P B
6 cvmliftpht.e φ F P = G 0
7 cvmliftpht.g φ G ph J H
8 isphtpc G ph J H G II Cn J H II Cn J G PHtpy J H
9 7 8 sylib φ G II Cn J H II Cn J G PHtpy J H
10 9 simp1d φ G II Cn J
11 1 2 4 10 5 6 cvmliftiota φ M II Cn C F M = G M 0 = P
12 11 simp1d φ M II Cn C
13 9 simp2d φ H II Cn J
14 phtpc01 G ph J H G 0 = H 0 G 1 = H 1
15 7 14 syl φ G 0 = H 0 G 1 = H 1
16 15 simpld φ G 0 = H 0
17 6 16 eqtrd φ F P = H 0
18 1 3 4 13 5 17 cvmliftiota φ N II Cn C F N = H N 0 = P
19 18 simp1d φ N II Cn C
20 9 simp3d φ G PHtpy J H
21 n0 G PHtpy J H g g G PHtpy J H
22 20 21 sylib φ g g G PHtpy J H
23 4 adantr φ g G PHtpy J H F C CovMap J
24 10 13 phtpycn φ G PHtpy J H II × t II Cn J
25 24 sselda φ g G PHtpy J H g II × t II Cn J
26 5 adantr φ g G PHtpy J H P B
27 6 adantr φ g G PHtpy J H F P = G 0
28 0elunit 0 0 1
29 10 adantr φ g G PHtpy J H G II Cn J
30 13 adantr φ g G PHtpy J H H II Cn J
31 simpr φ g G PHtpy J H g G PHtpy J H
32 29 30 31 phtpyi φ g G PHtpy J H 0 0 1 0 g 0 = G 0 1 g 0 = G 1
33 28 32 mpan2 φ g G PHtpy J H 0 g 0 = G 0 1 g 0 = G 1
34 33 simpld φ g G PHtpy J H 0 g 0 = G 0
35 27 34 eqtr4d φ g G PHtpy J H F P = 0 g 0
36 1 23 25 26 35 cvmlift2 φ g G PHtpy J H ∃! h II × t II Cn C F h = g 0 h 0 = P
37 reurex ∃! h II × t II Cn C F h = g 0 h 0 = P h II × t II Cn C F h = g 0 h 0 = P
38 36 37 syl φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P
39 4 ad2antrr φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P F C CovMap J
40 5 ad2antrr φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P P B
41 6 ad2antrr φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P F P = G 0
42 10 ad2antrr φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P G II Cn J
43 13 ad2antrr φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P H II Cn J
44 simplr φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P g G PHtpy J H
45 simprl φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P h II × t II Cn C
46 simprrl φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P F h = g
47 simprrr φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P 0 h 0 = P
48 1 2 3 39 40 41 42 43 44 45 46 47 cvmliftphtlem φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P h M PHtpy C N
49 48 ne0d φ g G PHtpy J H h II × t II Cn C F h = g 0 h 0 = P M PHtpy C N
50 38 49 rexlimddv φ g G PHtpy J H M PHtpy C N
51 22 50 exlimddv φ M PHtpy C N
52 isphtpc M ph C N M II Cn C N II Cn C M PHtpy C N
53 12 19 51 52 syl3anbrc φ M ph C N