Metamath Proof Explorer


Theorem cvmliftpht

Description: If G and H are path-homotopic, then their lifts M and N are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmliftpht.b B=C
cvmliftpht.m M=ιfIICnC|Ff=Gf0=P
cvmliftpht.n N=ιfIICnC|Ff=Hf0=P
cvmliftpht.f φFCCovMapJ
cvmliftpht.p φPB
cvmliftpht.e φFP=G0
cvmliftpht.g φGphJH
Assertion cvmliftpht φMphCN

Proof

Step Hyp Ref Expression
1 cvmliftpht.b B=C
2 cvmliftpht.m M=ιfIICnC|Ff=Gf0=P
3 cvmliftpht.n N=ιfIICnC|Ff=Hf0=P
4 cvmliftpht.f φFCCovMapJ
5 cvmliftpht.p φPB
6 cvmliftpht.e φFP=G0
7 cvmliftpht.g φGphJH
8 isphtpc GphJHGIICnJHIICnJGPHtpyJH
9 7 8 sylib φGIICnJHIICnJGPHtpyJH
10 9 simp1d φGIICnJ
11 1 2 4 10 5 6 cvmliftiota φMIICnCFM=GM0=P
12 11 simp1d φMIICnC
13 9 simp2d φHIICnJ
14 phtpc01 GphJHG0=H0G1=H1
15 7 14 syl φG0=H0G1=H1
16 15 simpld φG0=H0
17 6 16 eqtrd φFP=H0
18 1 3 4 13 5 17 cvmliftiota φNIICnCFN=HN0=P
19 18 simp1d φNIICnC
20 9 simp3d φGPHtpyJH
21 n0 GPHtpyJHggGPHtpyJH
22 20 21 sylib φggGPHtpyJH
23 4 adantr φgGPHtpyJHFCCovMapJ
24 10 13 phtpycn φGPHtpyJHII×tIICnJ
25 24 sselda φgGPHtpyJHgII×tIICnJ
26 5 adantr φgGPHtpyJHPB
27 6 adantr φgGPHtpyJHFP=G0
28 0elunit 001
29 10 adantr φgGPHtpyJHGIICnJ
30 13 adantr φgGPHtpyJHHIICnJ
31 simpr φgGPHtpyJHgGPHtpyJH
32 29 30 31 phtpyi φgGPHtpyJH0010g0=G01g0=G1
33 28 32 mpan2 φgGPHtpyJH0g0=G01g0=G1
34 33 simpld φgGPHtpyJH0g0=G0
35 27 34 eqtr4d φgGPHtpyJHFP=0g0
36 1 23 25 26 35 cvmlift2 φgGPHtpyJH∃!hII×tIICnCFh=g0h0=P
37 reurex ∃!hII×tIICnCFh=g0h0=PhII×tIICnCFh=g0h0=P
38 36 37 syl φgGPHtpyJHhII×tIICnCFh=g0h0=P
39 4 ad2antrr φgGPHtpyJHhII×tIICnCFh=g0h0=PFCCovMapJ
40 5 ad2antrr φgGPHtpyJHhII×tIICnCFh=g0h0=PPB
41 6 ad2antrr φgGPHtpyJHhII×tIICnCFh=g0h0=PFP=G0
42 10 ad2antrr φgGPHtpyJHhII×tIICnCFh=g0h0=PGIICnJ
43 13 ad2antrr φgGPHtpyJHhII×tIICnCFh=g0h0=PHIICnJ
44 simplr φgGPHtpyJHhII×tIICnCFh=g0h0=PgGPHtpyJH
45 simprl φgGPHtpyJHhII×tIICnCFh=g0h0=PhII×tIICnC
46 simprrl φgGPHtpyJHhII×tIICnCFh=g0h0=PFh=g
47 simprrr φgGPHtpyJHhII×tIICnCFh=g0h0=P0h0=P
48 1 2 3 39 40 41 42 43 44 45 46 47 cvmliftphtlem φgGPHtpyJHhII×tIICnCFh=g0h0=PhMPHtpyCN
49 48 ne0d φgGPHtpyJHhII×tIICnCFh=g0h0=PMPHtpyCN
50 38 49 rexlimddv φgGPHtpyJHMPHtpyCN
51 22 50 exlimddv φMPHtpyCN
52 isphtpc MphCNMIICnCNIICnCMPHtpyCN
53 12 19 51 52 syl3anbrc φMphCN