Description: If G and H are path-homotopic, then their lifts M and N are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cvmliftpht.b | |
|
cvmliftpht.m | |
||
cvmliftpht.n | |
||
cvmliftpht.f | |
||
cvmliftpht.p | |
||
cvmliftpht.e | |
||
cvmliftpht.g | |
||
Assertion | cvmliftpht | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftpht.b | |
|
2 | cvmliftpht.m | |
|
3 | cvmliftpht.n | |
|
4 | cvmliftpht.f | |
|
5 | cvmliftpht.p | |
|
6 | cvmliftpht.e | |
|
7 | cvmliftpht.g | |
|
8 | isphtpc | |
|
9 | 7 8 | sylib | |
10 | 9 | simp1d | |
11 | 1 2 4 10 5 6 | cvmliftiota | |
12 | 11 | simp1d | |
13 | 9 | simp2d | |
14 | phtpc01 | |
|
15 | 7 14 | syl | |
16 | 15 | simpld | |
17 | 6 16 | eqtrd | |
18 | 1 3 4 13 5 17 | cvmliftiota | |
19 | 18 | simp1d | |
20 | 9 | simp3d | |
21 | n0 | |
|
22 | 20 21 | sylib | |
23 | 4 | adantr | |
24 | 10 13 | phtpycn | |
25 | 24 | sselda | |
26 | 5 | adantr | |
27 | 6 | adantr | |
28 | 0elunit | |
|
29 | 10 | adantr | |
30 | 13 | adantr | |
31 | simpr | |
|
32 | 29 30 31 | phtpyi | |
33 | 28 32 | mpan2 | |
34 | 33 | simpld | |
35 | 27 34 | eqtr4d | |
36 | 1 23 25 26 35 | cvmlift2 | |
37 | reurex | |
|
38 | 36 37 | syl | |
39 | 4 | ad2antrr | |
40 | 5 | ad2antrr | |
41 | 6 | ad2antrr | |
42 | 10 | ad2antrr | |
43 | 13 | ad2antrr | |
44 | simplr | |
|
45 | simprl | |
|
46 | simprrl | |
|
47 | simprrr | |
|
48 | 1 2 3 39 40 41 42 43 44 45 46 47 | cvmliftphtlem | |
49 | 48 | ne0d | |
50 | 38 49 | rexlimddv | |
51 | 22 50 | exlimddv | |
52 | isphtpc | |
|
53 | 12 19 51 52 | syl3anbrc | |